RESEARCH MEMORANDUM ALTITUDE COMPONENT PERFORMANCE OF THE YJ73-GE-3 TURBOJET ENGINE John E. McAulay and Carl E. Campbell Lewis Flight Propulsion Laboratory Cleveland, Ohio ## LIBRARY COPY JAN 12 1955 LANGLEY AERONAUTICAL LABORATORY LIBRARY, NAGA LANGLEY FIELD, VIRGINIA material contains information affecting the National Datense of the United States within the meaning applorage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any to an unauthorized person is prohibited by law. ## NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON January 10, 1955 UNCLASSIFIED CLASSIFICATION CHANGEL ## NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS ## RESEARCH MEMORANDUM ALTITUDE COMPONENT PERFORMANCE OF THE YJ73-GE-3 TURBOJET ENGINE By John E. McAulay and Carl E. Campbell #### SUMMARY An investigation to determine the altitude performance characteristics of the YJ73-GE-3 turbojet engine was conducted in an altitude chamber of the NACA Lewis laboratory. The engine was equipped with variable inlet guide vanes. The component performance was determined at two positions of the inlet guide vanes over a range of engine speeds, exhaust-nozzle areas, and flight conditions. The range of flight conditions covered corresponds to a variation in compressor Reynolds number index from 0.96 to 0.12. A reduction in Reynolds number index over approximately the range indicated resulted in a decrease in the corrected air flow of $4\frac{1}{2}$ percent and in compressor efficiency of 6 percent. By operating the engine with the inlet guide vanes closed, the compressor steady-state performance was improved at corrected engine speeds below 6300 rpm. For example, at a corrected engine speed of 5600 rpm, the compressor efficiency was raised from 0.73 to 0.82 as the inlet guide vanes were moved from the open to the closed position. At rated engine conditions at a flight Mach number of 0.8, the combustion efficiency varied from 0.98 to 0.96 as altitude was varied from sea level to 55,000 feet. Within the range of this investigation, turbine efficiency varied about 4 percent. About half this variation is due to the effect of turbine-inlet Reynolds number, while the remaining half is due to changes in the turbine operating point. #### INTRODUCTION An investigation to determine the altitude performance and operational characteristics of the YJ73-GE-3 turbojet engine was conducted in an altitude chamber of the NACA Lewis laboratory. As part of this investigation, the performance of the components operating in the engine was obtained and is presented herein. The engine discussed herein is the production version of the J73 and is 3167 CV-1 equipped with variable inlet guide vanes to avoid compressor surge during acceleration at low engine speed. The component performance is shown for operating conditions that occur over a range of engine speeds at four fixed exhaust-nozzle areas with the inlet guide vanes in both the open and closed positions. Simulated flight conditions varied from altitudes of approximately sea level to 55,000 feet and flight Mach numbers from zero to 1.2 (corresponding to a Reynolds number index range from 0.96 to 0.12). All data were taken with the inlet screens retracted. #### APPARATUS #### Installation and Instrumentation The altitude-chamber test section in which the engine was installed is 14 feet in diameter and 20 feet long (fig. 1). A photograph of the engine installed in the test chamber is shown in figure 2. The platform on which the engine was rigidly mounted is connected by a linkage to a balance-pressure diaphragm for measuring engine thrust. A honeycomb is installed in the chamber upstream of the test section to straighten and smooth the flow of the inlet air. The front bulkhead, which incorporates a labyrinth seal around the forward end of the engine, prevents the flow of combustion air directly into the engine compartment and exhaust system and provides a means of maintaining a pressure difference across the engine. A bellmouth cowl was installed on the front bulkhead just ahead of the engine to obtain a smooth flow of air into the compressor. Air supplied to the inlet section of the altitude chamber can be either heated or refrigerated. Exhaust gases from the jet nozzle pass through an exhaust section, a primary cooler, an exhaust header, and a secondary cooler before entering the exhauster system. The inlet and exhaust pressure controls were designed to automatically maintain constant the desired ram pressure ratio and exhaust pressure. The location of the instrumentation stations throughout the engine is shown in the cross-sectional sketch of figure 3. Also shown on this figure is a table giving the number of pressure tubes, wall static orifices, and thermocouples at each station. All pressures were measured by means of alkazene or mercury manometers and were photographically recorded. Temperatures were measured with iron-constantan and chromel-alumel thermocouples and were recorded by self-balancing potentiometers. Engine speed was measured by a chronometric tachometer and fuel flow by means of a calibrated rotameter. ## Engine At static sea-level conditions the YJ73-GE-3 turbojet engine has the following ratings: | | Military | Normal | |---|----------|--------| | Engine speed, rpm | 7950 | 7615 | | Exhaust-gas temperature, OF | 1185 | 1085 | | Thrust, 1b (screens retracted) | 8920 | 7840 | | Specific fuel consumption, lb/(hr)(lb thrust) | 0.917 | 0.887 | Compressor-outlet leakage and bleed air are used to provide a balance piston force at the front of the compressor and to cool the turbine disks and the first-stage turbine stator. This air is eventually returned to the main air stream before it passes through the exhaust nozzle. The standard fixed-area conical exhaust nozzle has a nominal diameter of 21 inches. This nozzle was sized to give limiting exhaust-gas temperature at rated engine speed at static sea-level conditions. In addition, three larger exhaust nozzles were also installed on the engine during the program. The largest exhaust nozzle used had an exit area slightly larger than the turbine-outlet area. ### Compressor The 12-stage axial-flow compressor is shown in figure 4(a). The 21 variable inlet guide vanes rotate simultaneously through an angle of 30° from the open to the closed position. In the open position, the angles between the engine center line and a line tangent to the leading and trailing edges of the guide-vane airfoil sections at the root and the tip are 0° and 13°, respectively. The inlet guide vanes change position at an engine speed of 6800 rpm, going from the closed to the open position as speed is increased. The rate at which this change is made is independent of engine characteristics. The significant compressor design parameters are: | Blade-tip diam
Rotor hub-tip | 10t | ter
the | : (| CC | na | ste | nt, | , (د | , 1 | ln. | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 32 <u>1</u> | |---------------------------------|-----|------------|-----|----|----|-----|-----|------|-----|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-------------| | First stage | • | • | • | • | • | • | ٠. | | | | | | | | | • | | • | | • | • | | | | • | 0.46 | | Tast stage | | _ | _ | 0.88 | | Air flow, lb/sec | | | | | | | | | | | | | ¹ 143 | |------------------------------------|---|----|---|---|---|---|---|---|------|---|---|---|------------------| | Air flow per sq ft of frontal area | • | •. | • | • | • | • | • | • | ٠٠,. | • | • | • | . 25.4 | | Compressor efficiency | | | | | | | | | | | | | | | Compressor-inlet tip Mach number | | | | | | | | | | | | | 0.997 | #### Combustor The combustor used in this engine is of the cannular type, consisting of an annular space containing 10 can-type liners (fig. 4(b)) that are connected to the turbine-inlet annulus by transition sections. Two spark-plug-type ignitors, located in liners diametrically opposite, are employed for engine starting. Large elliptical cross-over tubes between liners are used to facilitate flame propagation during highaltitude starting. Fuel is supplied to a dual-element fuel nozzle in each combustor primary zone. A fuel-flow divider ahead of the fuel nozzles determines the division of the fuel to the small and large orifices of each fuel nozzle. The maximum combustor flow area, which is an annular area, is 5.3 square feet and results at rated conditions in an average reference velocity of about 95 feet per second in the combustor primary zone. #### Turbine The two-stage axial-flow turbine rotor is shown in figure 4(c). The significant turbine design parameters are: | Blade-tip diameter, in. | 1 | |-------------------------------------|------| | First stage | 29= | | | _ | | Second stage | 31층 | | Hub-tip radius ratio | J | | First stage | 0.73 | | Second stage | 0.64 | | Average radial tip clearance, in | 0.05 | | Rated turbine-inlet temperature, OR | 2020 | | Rated corrected turbine speed, rpm | 4040 | | Design corrected work, Btu/lb | 28.5 | | | 42 | | | | From manufacturer's compressor-rig tests. 3167 3167 The first-stage turbine stator contains internal passages through which cooling air from the compressor leakage is passed. The second- 5 stage turbine stator blades increase in height from leading to trailing edge by an amount corresponding to the previously mentioned change in turbine tip diameter between the two stages. #### PROCEDURE A temporary limitation in the refrigeration system occurred during the period of this investigation when most of the data were obtained, and thus the inlet-air temperatures were confined to a range between 60° and -20° F. Limited data were taken later when it became possible to obtain inlet temperatures of -80° F and below. The preponderance of the data (given in table I) were obtained in the earlier period, and the later data (table II)
were undertaken only to extend the data to higher values of corrected engine speed. The following table indicates the range over which the earlier data were obtained with four different exhaust nozzles: | Nominal
pressure
altitude, ft | Nominal flight
Mach number,
MO | Average Reynolds
number index | Nominal engine-
speed range,
rpm | Inlet-
guide-vane
position | |-------------------------------------|--------------------------------------|----------------------------------|--|----------------------------------| | Sea-level | 0 | 0.96
.96 | 5500-7950
3600-7950 | Open
Closed | | 15,000 | 0.8 | 0.88 | 5500-7950 | Open | | 25,000 | 0.8 | 0.59 | 5500-7950 | Open | | 35,000 | 1.2
.8
.8 | 0.58
.39
.40 | 5500-7950
5500-7950
4500-7950 | Open
Open
Closed | | 45,000 | 0.8 | 0.24 | 5500-7950 | Open | | 55,000 | 0.8 | 0.15
.12 | 5500-7950
5500- 7 950 | Open
Open | The later data were taken only at altitudes of 35,000 feet and above with the inlet guide vanes open. Although the flight conditions of these data correspond to the data listed above, the Reynolds number indices differ, inasmuch as these data were taken at a considerably lower inlet-air temperature. The fuel used throughout the investigation was MIL-F-5624A, grade JP-4, with a lower heating value of 18,700 Btu per pound and a hydrogen-carbon ratio of 0.168. The symbols and methods of calculation used in this report are given in appendixes A and B, respectively. #### RESULTS AND DISCUSSION The performance is presented herein for each component over a range of operating conditions as an independent component and also as a component operating in the engine. The data in this report are presented for various values of Reynolds number index, not altitude and Mach number. In order to correlate these data with flight conditions, the variation of Reynolds number index with altitude and flight Mach number for standard NACA conditions is shown in figure 5. #### Compressor Performance Performance maps. - The compressor performance is presented by showing lines of constant corrected engine speed (compressor Mach number) and compressor efficiency on coordinates of compressor pressure ratio and corrected air flow. Performance maps with the inlet guide vanes in the closed position are presented in figures 6(a) and (b) at the two Reynolds number indices for which complete data were obtained, namely, 0.96 and 0.40. Within the accuracy of the data, a given corrected engine speed resulted in only one compressor pressure ratio for corrected engine speeds of 6000 rpm or lower. The peak compressor efficiency occurred at a corrected engine speed of 6000 rpm and decreased from 0.82 to 0.79 as Reynolds number index decreased from 0.96 to 0.40. This same change in Reynolds number index had little or no effect on corrected air flow. With the inlet guide vanes in the open position, data were taken over a sufficient range of Reynolds number indices to define clearly the Reynolds number effect. Performance is presented in the compressor map (fig. 6(c)) at Reynolds number index of 0.39 and in figure 7, which shows the variation of corrected air flow and compressor efficiency with Reynolds number index for constant values of corrected engine speed and compressor pressure ratio. Data at Reynolds number index of 0.39 were selected for figure 6(c) because of the high corrected engine speed data that were available. A peak compressor efficiency of slightly over 0.84 occurred at a corrected engine speed of about 7100 rpm and a compressor pressure ratio of 5.5. At rated corrected engine speed, the compressor efficiency decreased to 0.81 and the corrected air flow was about 141 pounds per second. Within the range of exhaust-nozzle areas used to obtain the data, variation in compressor pressure ratio at a given corrected engine speed resulted in small changes in compressor efficiency of the order of 0.02 or less. At corrected engine speeds above 7000 rpm, variations in pressure ratio had little effect on corrected air flow; while at speeds below 7000 rpm, the corrected air flow increased as pressure ratio was reduced. Effect of Reynolds number. - The effects of Reynolds number on compressor efficiency and corrected air flow are presented in figure 7. A careful examination of the data obtained at Reynolds number indices other than 0.39 has shown these curves to be valid for open-inlet-guide-vane operation at all compressor pressure ratios at corrected engine speeds of 6800 rpm and above. For a given corrected engine speed and compressor pressure ratio, the ordinates of figure 7 give the ratio of the compressor efficiency and corrected air flow at any Reynolds number index to the compressor efficiency and corrected air flow at a Reynolds number index of 0.39. Thus, the corrected air flow and compressor efficiency can be obtained for a Reynolds number index of 0.39 (fig. 6(c)) and corrected to any desired Reynolds number index (fig. 7) within the range investigated. The effects of Reynolds number as shown in figure 7 are to reduce the compressor efficiency about 6 percent and the corrected air flow about $4\frac{1}{2}$ percent as Reynolds number index is decreased from 0.96 to 0.12. The decreases in compressor efficiency and corrected air flow with Reynolds number index are small until Reynolds number index is reduced below 0.5. Comparison of compressor performance with inlet guide vanes in open and closed positions. - A comparison of the performance with open and closed inlet guide vanes is presented in figure 8 at a Reynolds number index of 0.96. In this figure, compressor pressure ratio, efficiency, and corrected air flow for the rated exhaust-nozzle area are shown as functions of corrected engine speed. Also shown are the pressure-ratio stall lines for the two inlet-guide-vane positions. The range of corrected engine speeds over which the inlet guide vanes will change position is also indicated. It can readily be seen that, at low corrected engine speeds (below 6300 rpm), an improvement in the steady-state compressor performance may be obtained by operating with the inlet guide vanes in the closed position; at corrected engine speeds above 6300 rpm, the opposite is true. At a corrected engine speed of 5600 rpm, for example, changing the inlet guide vanes from the open to the closed position resulted in no change in pressure ratio, an increase in corrected air flow from 70 to 72 pounds per second, and an increase in compressor efficiency from 0.73 to 0.82. The surge lines indicate about the same margin of acceleration (in terms of pressure ratio) for either guide-vane position. Consideration of the steady-state performance and surge lines would indicate that, in general, a lower switch-over speed than that provided would be advantageous. Engine acceleration characteristics, which are beyond the scope of this report, are not completely determined by the variables shown in figure 8, however. No final selection of switch-over point should be made, therefore, without consideration of acceleration characteristics. Performance maps for compressor operating as part of engine. - In order to identify the compressor performance with engine operating conditions, lines of constant corrected turbine-inlet temperature are superimposed in figure 9 on the compressor maps obtained at Reynolds number indices of 0.96 and 0.12, the limits over which the investigation was conducted. Also superimposed on each map is a line showing the mode of operation with rated exhaust-nozzle area. At a Reynolds number index of 0.96 (fig. 9(a)), with the engine operated at rated corrected engine speed and exhaust-nozzle area, the compressor pressure ratio was 7.0, the corrected air flow 143 pounds per second, the compressor efficiency 0.82, and the corrected turbine-inlet temperature 2020 R. As Reynolds number index was reduced to 0.12 (fig. 9(b)), at the same corrected engine speed and exhaust-nozzle area, the compressor pressure ratio remained at 7.0. the corrected air flow and compressor efficiency decreased to 136 pounds per second and 0.78, respectively, and the corrected turbineinlet temperature was raised to 2180° R. As noted previously, the reductions in corrected air flow and compressor efficiency are due to Reynolds number effects on the compressor. A similar effect on the turbine performance will be shown in a later section. These Reynolds number effects were of such magnitude and direction that a constant compressor pressure ratio and an increased corrected turbineinlet temperature resulted. For both Reynolds number indices, the operating line for rated exhaust-nozzle area passed through the region of maximum compressor efficiency. Pressure loss through the compressor-outlet diffuser. - The loss in total pressure in the diffuser between the compressor and combustor may be expressed in terms of total-pressure loss ratio (pressure loss divided by inlet pressure). Over the entire range of this investigation this total-pressure loss ratio was about 0.6 percent. ## Combustor Performance Combustion efficiency. - As shown in reference 1, combustion efficiency for several combustors correlates with combustor-inlet conditions P_4T_3/V_b . Combustion efficiency is presented as a function of P_4T_3/V_b in figure 10. Over the range that the combustor operated in this engine, the fuel distribution and fuel-air ratio were found to have negligible effect on this correlation. An auxiliary scale of $W_{a,1}T_7$, which is proportional to P_4T_3/V_b , is also shown, because it is considered a more practical parameter insofar as engine operation 3167 . . .- -- • .. is concerned. The combustion efficiency was constant at 0.98 above P_4T_3/V_b of 35,000 ($W_{8,1}T_7$ of 52,500). A decrease in combustion parameter below this value resulted in a decrease in combustion efficiency to 0.83 at P_4T_3/V_b of 6000. Thus, at rated
engine conditions and a flight Mach number of 0.8, the combustion efficiency remained at 0.98 up to an altitude of about 37,000 feet (P_4T_3/V_b of 35,000) and decreased to 0.96 at an altitude of 55,000 feet (P_4T_3/V_b of 23,000). Combustor total-pressure loss. - The combustor total-pressure loss ratio is presented as a function of combustor temperature ratio in figure 11. Data for all Reynolds number indices fall along a single curve. The pressure loss ratio decreased from 0.075 to 0.037 as combustor temperature ratio increased from 1.0 to 2.2 (approximately the combustor temperature ratio at rated conditions). Combustor-outlet temperature distribution. - The data presented in figure 12 are typical temperature profiles at the turbine outlet. Previous investigations have indicated that turbine-outlet profiles reflect the combustor-outlet profiles, although in somewhat diminished magnitude. The turbine-outlet station is used, because no reliable temperature measurements were available at the combustor cutlet. There were no consistent effects of altitude, flight Mach number, engine speed, or temperature level on the combustor temperature distribution. The data of figure 12 indicate that the radial temperature distribution with which the rotor would be concerned is relatively flat. However, the circumferential temperature variations are of considerable magnitude, amounting to 12 percent above the average (probably more ahead of the turbine). Therefore, near rated temperatures the local temperature may be more than 2000 F above the average. Although this circumferential unbalance is unimportant insofar as the rotor is concerned, it could be detrimental to the stator life. No adverse effects on stator life were observed during the testing reported herein, which included over 170 hours of engine operation at various conditions without engine overhaul. #### Turbine Performance Performance map. The performance of the turbine is presented in terms of corrected enthalpy drop and turbine gas-flow parameter with lines of constant corrected turbine speed, turbine pressure ratio, and turbine efficiency. Data for compressor Reynolds number indices of 0.96 and 0.88 were combined to construct the map shown in figure 13. For these compressor Reynolds number indices, the turbine Reynolds number index varied nominally from 0.90 to 1.50. A check showed that 3167 turbine Reynolds number had a negligible effect over this range of turbine Reynolds number indices. Therefore, the map of figure 13 was constructed from all data that fell within this turbine Reynolds number index range. Because of the variable inlet guide vanes used on this engine, it was possible to obtain turbine performance over a much wider range of enthalpy drop (at a constant corrected turbine speed) than is usually possible in engine performance evaluations. At rated static sea-level conditions, the turbine operated at a corrected turbine speed of 4040 rpm and a corrected enthalpy drop of 30.0 Btu per pound. This operating point on the map of figure 13 (which approximates the static sea-level condition) corresponded to a turbine pressure ratio of 2.96, a corrected turbine gas flow of 43.0 pounds per second, and a turbine efficiency of 0.87. From the turbine weight-flow parameter, it may be determined that increasing the corrected turbine speed from 3900 to 4600 rpm resulted in about a $2\frac{1}{2}$ -percent reduction in the corrected turbine gas flow. Thus, the critical turbine flow area decreased as corrected turbine speed was increased, which indicated that the critical turbine flow area was downstream of the first-stage stator. The peak turbine efficiency, which was slightly over 0.87 for the data shown in figure 13, occurred at a corrected turbine speed of about 4150 rpm. Over the entire range of turbine operation in figure 13, the efficiency varied less than 0.02. At any given corrected turbine speed, changing the turbine pressure ratio had no discernible effect on corrected gas flow or efficiency within the range investigated. Effect of Reynolds number. - The effect of turbine Reynolds number on turbine efficiency and corrected turbine gas flow at a given corrected turbine speed and pressure ratio is presented in figure 14. The reference Reynolds number index of 1.50 was used so that figures 13 and 14 could be used together in determining turbine performance. The trends shown in figure 14 are valid over the range of turbine operating conditions presented in figure 13. The effect of reducing the turbine Reynolds number from 1.50 to 0.15 was to decrease the corrected turbine gas flow 2 percent and the turbine efficiency $2\frac{1}{2}$ percent. Altitude Performance of Components at Rated Conditions The variation of component performance with altitude at a flight Mach number of 0.8 is presented in figure 15 for rated engine conditions (rated exhaust-nozzle area and either limiting engine speed or exhaust-gas temperature). Increasing altitude from sea level to 55,000 feet 3167 results in an increase in corrected engine speed from 7480 to 8610 rpm and a decrease in Reynolds number from 1.31 to 0.17. The corrected engine speed of 8610 rpm is reached at the tropopause and remains constant as altitude is raised above this value. Compressor efficiency decreased from 0.842 to 0.768 as altitude was increased from sea level to the tropopause. Practically all of this decrease resulted from the increased corrected engine speed, while the effect of Reynolds number up to the tropopause was negligible. As altitude was increased to 55,000 feet, a further reduction of compressor efficiency to 0.753 occurred entirely because of Reynolds number effects. As can be seen in figure 15, the reduction in compressor efficiency would have been greater (to 0.744), except that it was necessary to reduce the engine speed in order to maintain turbine temperature limits. The corrected air flow increased from 134.9 to 146.7 pounds per second as altitude was raised to the tropopause (assuming that corrected air flow is constant above a Reynolds number index of 0.96, i.e., fig. 7). This increase is due to the increase in corrected engine speed, which overshadowed the relatively small decrease associated with Reynolds number. As altitude was increased beyond the tropopause to an altitude of 55,000 feet, the corrected air flow was reduced to 142.9 pounds per second because of the effect of Reynolds number and the previously mentioned reduction in engine speed. An increase in the altitude from sea level to 55,000 feet resulted in a small decrease in combustion efficiency from 0.98 to 0.96. This reduction, of course, would increase if lower values of flight Mach number or engine speed were considered, inasmuch as combustion efficiency is primarily a function of the combustor pressure level. Turbine efficiency decreased from about 0.870 to 0.854 as altitude was raised from sea level to 55,000 feet. Over the range through which the turbine operates in the engine, turbine efficiency is a function only of corrected turbine speed and turbine Reynolds number (figs. 13 and 14). Because the corrected turbine speed remained nearly constant for rated engine conditions, the decrease in turbine efficiency resulted only from a decrease in turbine Reynolds number. #### CONCLUDING REMARKS Performance of the components of the YJ73-GE-3 engine was determined over a wide range of engine operating conditions and flight conditions. The effect of Reynolds number on the compressor performance at a constant corrected engine speed and compressor pressure ratio with the inlet guide vanes open was to reduce the corrected air flow $4\frac{1}{2}$ percent and the compressor efficiency 6 percent as Reynolds number index decreased from 0.96 to 0.12. At corrected engine speeds below 6300 rpm, the compressor performance can be improved by operating with the inlet guide vanes in the closed position. At a corrected engine speed of 5600 rpm, the compressor efficiency is raised from 0.73 to 0.82 as the inlet guide vanes move from the open to the closed position. At rated engine conditions at a flight Mach number of 0.8, as altitude was increased from sea level to 55,000 feet, the compressor efficiency was reduced about 11 percent and the corrected air flow was raised about 6 percent primarily because of the effects of increased corrected engine speed. The combustion efficiency remained at 0.98 at values of P_4T_3/V_b of 35,000 and above, which corresponds to rated engine conditions at an altitude of 37,000 feet or less and a flight Mach number of 0.8. At the same engine and flight conditions at an altitude of 55,000 feet, the combustion efficiency was 0.96. At all Reynolds number indices the combustor total-pressure loss ratio was 0.037 for rated engine conditions. Over the range of engine conditions investigated, at any given compressor Reynolds number index the turbine efficiency and the corrected turbine gas flow varied about 2 percent. As the turbine-inlet Reynolds number index was decreased from 1.50 to 0.15 at constant corrected turbine speed and turbine pressure ratio, the corrected turbine gas flow and the turbine efficiency decreased 2 and $2\frac{1}{2}$ percent, respectively. At rated engine conditions, as altitude was increased from sea level to 55,000 feet at 0.8 flight Mach number, a reduction in turbine efficiency of 2 percent was due only to the decrease in turbine Reynolds number. Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio, April 16, 1954 ### APPENDIX A #### SYMBOLS The following symbols are used in this report: - A cross-sectional area, sq ft - g acceleration due to gravity, 32.174 ft/sec2 - H total enthalpy of air or gas mixture, Btu/lb - M Mach number - N engine speed, rpm - P total pressure, lb/sq ft abs - p static pressure, lb/sq ft abs - R gas constant, 53.4 ft-lb/(lb)(OR) - Re Reynolds number - T total temperature, OR - V velocity, ft/sec - V_{cr}
critical velocity, $\sqrt{\frac{2\gamma}{\gamma+1}} \, gRT$, ft/sec - Wa air flow, lb/sec - Wr fuel flow, lb/hr - Wg gas flow, lb/sec - β function of γ , $\frac{1.4}{\gamma} \left[\frac{\left(\frac{\gamma+1}{2}\right)^{\frac{\gamma}{\gamma-1}}}{\left(\frac{1.4+1}{2}\right)^{\frac{1.4}{1.4-1}}} \right]$ - γ ratio of specific heats 7 | δ | pressure-correction factor P/2116 (total pressure divided by NACA standard sea-level pressure) | | • | |-------|--|---|------| | η | efficiency | | | | Θ | temperature-correction factor $(V_{\rm cr}/1018)^2$ (squared ratio of critical velocity to critical velocity at NACA standard sealevel conditions) | | | | λ | $\frac{Am + B}{m + 1}$, $\frac{Btu}{lb \text{ of fuel}}$ (as defined in ref. 2) | | 3167 | | μ | absolute viscosity, lb-sec/sq ft | | | | ρ | density, lb-sec ² /ft ⁴ | | | | ф | viscosity-correction factor $\mu/3.719\times10^{-7}$ (viscosity divided by NACA standard sea-level viscosity) | | | | Subsc | ripts: | | • | | a. | air | | _ | | đ | combustor | | | | С | compressor | | | | g | gas mixture | | | | i | indicated | - | | | t | turbine | | | | 0 | free-stream conditions | | | | 1 | engine or compressor inlet | | | | 3 | compressor outlet, compressor diffuser inlet | | | | 1 | combustor inlet, compressor diffuser outlet | | | | 5 | turbine inlet, combustor outlet | | | | 3 | turbine outlet, tail-pipe diffuser inlet | | | exhaust-nozzle inlet, tail-pipe diffuser outlet #### APPENDIX B #### METHODS OF CALCULATION Temperature. - Total temperatures were calculated from indicated temperatures by the following relation: $$T = \frac{T_1\left(\frac{P}{p}\right)^{\frac{\gamma-1}{\gamma}}}{1 + 0.85 \cdot \left(\frac{P}{p}\right)^{\frac{\gamma-1}{\gamma}}}$$ (1) where 0.85 is the impact recovery factor for the type of thermocouple used. Reynolds number index. - For a given corrected engine or turbine speed, Reynolds number index varies linearly with Reynolds number and is defined as the ratio of Reynolds number at any condition to Reynolds number at standard sea-level conditions: Re index = $$\frac{\delta}{\phi \sqrt{\theta}}$$ (2) Air flow. - Air flow was determined from pressure and temperature measurements at the engine inlet (station 1) by the following equation: $$W_{a,1} = g\rho_1 A_1 V_1 = p_1 A_1 \sqrt{\left(\frac{2\gamma_1}{\gamma_1 - 1}\right)\left(\frac{g}{RT_1}\right)\left(\frac{p_1}{p_1}\right)^{\frac{\gamma_1 - 1}{\gamma_1}} \left(\frac{p_1}{p_1}\right)^{\frac{\gamma_1 - 1}{\gamma_1}} - 1\right)}$$ (3) The various compressor-outlet bleed and leakage flows were determined to be about 2 percent of the inlet-air flow. Although portions of the flow reenter ahead of the turbine (after station 5) and between turbine stages, this flow was ignored insofar as station 6 is concerned. However, the entire bleed and leakage flow has reentered the mainstream flow before passing through the exhaust nozzle. The air or gas flows at the various stations were calculated by the following equations: $$W_{a.3} = W_{a.1} \tag{4}$$ $$W_{g,7} = W_{a,1} + \frac{W_f}{3600} \tag{6}$$ Compressor efficiency. - Compressor efficiency was calculated by use of the tables in reference 3 and neglecting water-vapor corrections. Using known values of compressor-inlet and -outlet total pressure and temperature, compressor efficiency was determined from the following expression: $$\eta_{c} = \frac{H_{3,isentropic} - H_{1}}{H_{3,actual} - H_{1}}$$ (7) Combustion parameter. - Combustion parameter P_4T_3/V_b is most easily calculated by assuming that the burner-inlet Mach number is low enough that total and static values of temperature and pressure are nearly equal. Thus, it can be shown that $$\frac{P_4 T_3}{V_b} = \left(\frac{A_b}{R}\right) \frac{P_4^2}{W_{a,4}} \tag{8}$$ where $A_{\rm b}$ is the maximum combustor flow area and is equal to approximately 5.3 square feet; and $V_{\rm b}$, which is not a real velocity at the combustor inlet, is used according to criteria previously established in order that various combustors could be compared on a fair basis. Combustion efficiency. - Combustion efficiency is defined as the ratio of the actual enthalpy rise of the gas while passing through the engine to the theoretical increase in enthalpy that would result from complete combustion of the fuel: $$\eta_{b} = \frac{H_{a,7} + \frac{W_{f}}{3600W_{a,1}} \lambda_{7} - H_{a,1}}{18,700 \frac{W_{f}}{3600W_{a,1}}}$$ (9) where 18,700 Btu per pound is the lower heating value of the fuel. 5167 Turbine-inlet total temperature. - Turbine-inlet temperature was calculated by the use of temperature-enthalpy tables and the following equation: $$H_{g,5} = \frac{W_{a,1} (H_{a,3} - H_{a,1})}{W_{g,5}} + H_{a,7}$$ (10) The difference in the fuel-air ratios between stations 5 and 7 is negligible with respect to calculation involving equation (10). Turbine efficiency. - Turbine efficiency was obtained from the relation $$\eta_{t} = \frac{1 - T_{7}/T_{5}}{\frac{\gamma_{t} - 1}{\gamma_{t}}}$$ $$1 - \left(\frac{P_{6}}{P_{5}}\right)$$ (11) where $\gamma_{\rm t}$ is based on $\frac{{ m T}_5\,+\,{ m T}_7}{2}$ and fuel-air ratio. #### REFERENCES - Childs, J. Howard: Preliminary Correlation of Efficiency of Aircraft Gas-Turbine Combustors for Different Operating Conditions. NACA RM E50Fl5, 1950. - 2. Turner, L. Richard, and Bogart, Donald: Constant-Pressure Combustion Charts Including Effects of Diluent Addition. NACA Rep. 937, 1949. (Supersedes NACA TN's 1086 and 1655.) - 3. Amorosi, A.: Gas Turbine Gas Charts. Res. Memo. No. 6-44 (Navships 250-330-6), Bur. Ships, Navy Dept., Dec. 1944. TABLE 1. - PERFORMANCE DATA (a) Inlet guide vanes open. | Run | Com- pressor Reynolds number index, \$\frac{a_1}{\phi_1\sqrt{\beta_1}}\$ | Altitude-
exhaust
pressure,
Po-
lb/sq ft | Flight
Mach
number,
Mg | Equivalent ambient-air statio temperature, to, R | Engine- inlet total temper- ature, T1, oR | Engine- inlet total pressure, pl, lb sq ft abs | Compressor-
inlet total
pressure,
P2,
1b | Compressor-
outlet
total
tempera-
ture.
Ts' | Compressor-
outlet
total
pressure,
Ps,
lb
sq rt abs | Combustor-
inlet
total
pressure,
P4.
15 | Turbins-
inlet
total
temper-
ature,
Tg,
R | Turbine- inlet total pressure, P5, 10 sq ft abs | Turbine-
outlet
total
tempera-
ture,
T6,
oR | furbine-
outlet
total
pressure,
Pg,
1b
sq ft abs | Tail-
pipe
total
temper-
ature,
T7,
OR | Tail- pipe total pressure, P7, 1b ng ft abs | |----------------------------|---|--|--|--|---|--|--|--|---|--|---|---|---|--|--|---| | | | | | | | | Exhaus | t-nozzle ar | ma, 2.388 aq | ft | | | | | | | | 1
2
5
4
5 | 0.922
.925
.928
.938
.959 | 2055
2043
2057
2039
2041 | 0 0 0 0 . | 522
522
522
520
518 | 514
514
515
515
516 | 1952
1942
1944
1970
2014 | 1899
1913
1917
1951
2007 | 979
965
926
858
859 | 13616
13175
12022
9678
5887 | 15427
12952
11865
9516
5875 | 2050
1967
1610
1560
1450 | 12565
11462
9139
5340 | 1691
1824
1470
1246
1247 | 4418
4280
3949
3289
2477 | 1632
1872
1444
1247
1212 | 4315
4184
3840
3197
2452 | | 6
7
8
9 | .862
.854
.861
.871
.881 | 1186
1187
1176
1189
1176 | .803
.806
.812
.798
.811 | 448
448
448
451
450 | 508
507
507
509
509 | 1915
1819
1812
1809
1811 | 1785
1797
1794
1792
1805 | 969
919
848
848
844 | 12794
11526
8781
8735
4911 | 12668
11241
6728
8877
4887 | 2018
1790
1458
1443
1063 | 12189
10795
8558
8314
4805 | 1654
1446
1161
1157
846 | 4146
3672
2807
2788
1718 | 1615
1419
1148
1142
839 | 4045
3554
2758
2724
1684 | | 11
12
13
14
16 | .857
.577
.575
.575 | 1165
769
775
782
766 | .802
.815
.803
.800 | 454
445
446
447
448 | 512
502
504
504
505 | 1806
1195
1185
1192
1188 | 1802
1172
1187
1175
1174 | 734
987
954
916
844 | 4793
8515
8150
7425
5826 | 4774
8424
8078
7363
5785 | 1067 .
2028 .
1958 .
1790 . | 4515
8119
7784
7079
5551 | 850
1635
1581
1441
1175 | 1708
2786
2539
2609
1843 | 848
1623
1558
1422
1152 | 16\$8
2692
2576
2547
1812 | | 16
17
18
19 | .576
.578
.575
.578 | 774
494
494
411
404 | .811
1.21
1.20
1.21
1.21 | 447
394
395
394
395 | 508
609
509
510
510 | 1192
1209
1201
1206
1204 | 1187
1189
1184
1191
1192 | 726
974
958
921
848 | 3162
8487
8173
7485
5769 | 5146
6419
8106
7426
5732 | 1055
2020
1955
1790
1450 |
2984
8090
7798
7136
5493 | 844
1637
1583
1450
1165 | 1124
9763
2587
2494
1842 | 840
1618
1560
1424
1849 | 1100
2588
2585
2547
1797 | | 21
22
23
24
25 | .578
.382
.382
.387 | 456
482
485
490
490 | 1,22
,804
,805
,805 | 395
445
444
442
442 | 51.2
502
502
499
502 | 1209
753
746
750
753 | 1905
742
737
740
743 | 726
970
954
934
917 | 5058
5353
5190
5039
4770 | 3031
5315
5151
4997
4739 | 950
2035
1980
1900
1800 | 2648
5106
4955
4904
4556 | 718,
1881,
1810,
1581,
1488 | 826
1738
1584
1686
1544 | 722
1528
1568
1506
1431 | 921
1894
1638
1565
1502 | | 26
27
28
28
30 | .567
.362
.567
.582
.220 | 481
502
482
482
501 | .869
.768
.803
.788
.789 | 440
447
443
447
443 | 409
503
500
504
499 | 749
754
752
748
458 | 739
749
748
746
453 | 882
844
773
729
983 | 4551
5655
2761
1974
5263 | 1218
3622
2776
1961
3240 | 198%
1678
1220
1083
2020 | 41.33
3474
2832
1863
5115 | 1395
1165
987
887
1650 | 1.594
1180
901
899
1087 | 1519
1170
988
864
1514 | 1355
1140
876
888
1029 | | 51
52
53
54
55 | .225
.225
.220
.220 | 304
507
295
300
298 | .805
.794
.819
.804 | 445
443
444
445
441 | 805
499
505
500
505 | 466
465
458
459
459 | 458
480
452
454
454 | 980
945
922
891
846 | \$231
3143
2940
2700
2262 | 3208
3114
2915
2638
2960 | 1990-
1940
1850
1710
1500 | 5079
2998
2808
2577
2171 | 1635
1597.
1490
1379
1211 | 1048
1021
944
872
723 | 1590
1590
1452
1561
1168 | 1090
993
916
846
701 | | 38
37
38
39
40 | .224
.225
.139
.137
.136 | 307
310
195
189
185 | .800
.795
.791
.808
.818 | 443
447
458
457
457 | 500
503
515
516
518 | 466
470
294
290
257 | 465
468
292
266
284 | 804
739
965
943
919 | 1950
1970
1880
1785
1849 | 1945
1205
1876
1744
1842 | 1330
1140
2000
1897
1770 | 1861
1201
1808
1672
1572 | 1049
895
1644
1546
1459 | 826
445
525
576
534 | 1051
912
1605
1519
1413 | 907
435
804
581
519 | | 41 45 46 47 | .138
.137
.100
.101
.101
.101 | 184
192
192
195
195
198 | .791
.792
.417
.417
.418
.405 | 480
480
501
491
499
501 | 518
518
518
517
517
517 | 293
290
216
220
220
219
221 | 290
28#
214
217
218
218
220 | 883
800
981
945
918
676
821 | 1445
932
1365
1360
1209
1042
675 | 1440
929
1359
1312
1198
1052
670 | 1505
1300
1971
1907
1605
1645
1590 | 1574
884
1508
1288
1148
967 | 1303
1067
1637
1597
1494
1350
1366 | 456
322
454
439
395
355
359 | 1284
1037
1582
1532
1448
1320
1317 | 453
319
441
428
584
547 | TABLE I. - Continued. PERFORMANCE DATA (a) Continued. Inlet guide vanes open. | Rogine
speed,
N,
rpm | Cor-
rected
engine
speed,
H | Compressor-
inlet tip
Mach
mumber,
K _c | Engine
air
flow,
Wa,1'
lb/sec | Operanted air flow, \[\frac{\sigma_0}{\text{b_1}}, \frac{\sigma_0}{\text{b_1}}, \frac{1}{\text{b_1}}, | Con-
pressor
pressure
ratio,
P ₃ /P ₁ | Cou-
pressor
effi-
uiency,
No | Compressor-
discharge
pressure-
les ratio,
(P3-P4)/P5 | Combustor pressure-
loss ratio,
P ₄ -P ₅ | Combus-
tion
sffi-
siency,
n _b | Combus-
tion
param-
eter,
PATS
Vb | Combus-
tion
param-
eter,
Wa,177K | Turbine
Reynolds
number
index
5 ₅ | turbine
speed, | Corrected turbine gas flow, Wg,5-\Gamma 65 h, lb/sec | offi-
cionay,
$\eta_{\rm t}$ | Corrected turbine enthalpy drop, AH, /OB, Btu Ib-seq | furbine
pres-
sure
ratio,
Pb/P | Run | |--|--|---|--|---|---|--|---|--|---|--|---|--|--|--|--|--|---|------------------------| | _ | | | | | | | Exhaust | nossle ar | ea, 2,38 | 8 sq ft | | | | | | _ | | | | 7955
7792
7409
6680
5498 | 7993
7830
7438
8706
5514 | 1,002
.982
.933
.641
.681 | 151.3
129.7
125.1
107.1
64.6 | 143,1
140,7
153,5
114.8
67,7 | 7,048
6,785
6,184
4,882
2,774 | 0.814
.824
.847
.850
.715 | 0,014
.017
.015
.007
.002 | 0,035
.030
.084
.040 | 0.988
.979
.979
.982 | 13.9
13.1
11.8
8.56
4.87 | 21,4
20,4
17.6
13.4
7.03 | 1.23
1.17
1.21
1.16
.74 | 4079
4064
4016
5890
5346 | 45.0
45.2
43.0
43.2
42.6 | 0.850
.867
.865
.862
.843 | 29.7
29.8
29.4
28.5
21.8 | 2.941
2.956
2.905
2.798
2.156 | 1
2
5
4
5 | | 7992
7413
6686
6670
5502 | 8023
7509
8764
6735
5556 | 1.008
.842
.848
.845 | 124.0
117.3
100.8
99.5
66.5 | 142.9
134.7
116.4
116.5
76.7 | 7.057
6.228
4.846
4.828
2,712 | .807
.835
.845
.853
,752 | .01.0
.006
.006
.006 | .038
040
042
042 | .977
.991
.995
.981 | 14.3
10.9
7.65
7.65
5.65 | 20.0
18.6
11.6
11.4
5.56 | 1.15
1.17
1.14
1.15
.93 | 4075
4051
4024
4042
3883 | 45.2
45.1
42.9
42.3
45.3 | .872
.877
.857
.839
.867 | 30.0
30.0
30.7
27.0 | 2.940
2.940
2.978
2.982
2.680 | 6
7
8
9
10 | | 5496
7953
7795
7417
6888 | 5536
9086
7910
7527
6780 | .694
1.014
.992
.844 | 62.5
82.1
80.1
78.7
68.2 | 72.8
143.5
141.0
154.1
116.5 | 2.654
7.137
6.876
6.929
4.912 | .742
.804
.815
.833
.851 | .004
.011
.009
.008
.007 | .068
.038
.039
.039 | .974
.989
.988
.981
.980 | 3.69
8.74
8.25
7.15
5.12 | 6.38
13.3
19.5
10.9
7.68 | .91
.77
.76
.77
.78 | 3875
4080
4084
4040
4015 | 41.8
45.1
45.1
45.1
42.5 | .874
.868
.878
.874
.852 | 26,8
30,0
30,0
80,0
50,0 | 2,653
2,935
2,942
2,939
3,012 | 11 12 14 14 14 | | 5494
7983
7792
7420
8682 | 5584
8031
7888
7485
8741 | .698
1.007
.987
.938
.845 | 42.3
82.2
80.3
76.7
65.8 | 74.1
149.4
140.1
155.5
114.7 | 2.653
7.020
8.805
6.906
4.792 | .729
.806
.817
.840 | .005
.008
.008
.008
.008 |
.058
.059
.058
.059
.042 | .967
.985
.985
.977
,982 | 2.37
8.75
8.29
7.28
5.05 | 3.55
15.3
19.5
10.9
7.56 | .59
.76
.76
.77
.75 | 3893
4088
4088
4044
4019 | 42.5
43.2
43.1
42.7
42.6 | .866
.864
.884
.863
.858 | 27.0
29.8
50.4
29.7
30.0 | 2.655
2.928
2,955
2,944
8,882 | 11
11
11
20 | | 5492
7951
7766
7551
7420 | 5530
9084
7919
7782
7544 | .693
1,014
.985
.978
.948 | 43.3
51.8
50.2
50.1
48.8 | 75.9
148.7
150.9
158.5
154.9 | 2.526
7.109
6.957
6.719
6.555 | .724
.796
.814
.821
.832 | .008
007
.008
.008
.009 | .060
.038
.038
.038 | 1,004
,978
,955
,984
,971 | 2,15
5,84
8,35
5,05
4,65 | 5,12
8.42
7.86
7.53
6.98 | .66
.48
.48
.49
.49 | 4129
4070
4060
4039
4031 | 42.5
45.2
45.5
49.8
42.9 | .845
.868
.869
.887
.889 | 29.4
30.0
50.0
29.7
30.0 | 3.010
2.938
2.941
2.951
2.938 | 30000 | | 7097
6670
6015
6492
7645 | 7937
6765
6126
5573
6000 | .908
.848
.788
.699
1.003 | 46.1
41.3
34.9
25.6
30.9 | 127.8
113.7
95.5
71.4
139.9 | 5.762
4.832
3.698
2.639
7.124 | .849
.831
.827
.715
.799 | .004
.009
.002
.007 | .042
.043
.052
.050
.039 | .974
.940
.984
.984
.987 | 4.09
3.22
2.25
1.58
3.44 | 6,08
4.83
3.34
2.22
4.98 | .48
.47
.44
.37 | 4005
3990
3977
3843
4030 | 42.6
42.5
43.1
41.8
42.2 | .657
.653
.668
.853
.871 | 29.0
29.0
29.2
27.0
29.9 | 2.965
2.944
2.921
2.685
2.946 | 2 2 2 2 | | 7782
7655
7405
7106
6857 | 7905
7804
7522
7840
6778 | .991
.979
.843
.908
.848 | 81.1
30.7
29.1
28.3
25.3 | 158.9
157.2
159.4
126.2
115.1 | 6.935
6.759
8.419
5.862
4.972 | .802
.805
.833
.834
.847 | .008
.009
.009
.005 | .040
. 037
.038
.041
.039 | .952
.955
.936
.953
.967 | 5.35
5.19
2.95
2.58
2.04 | 4.84
4.73
4.23
3.88
5.01 | .31
.30
.29
.29 | 4026
4007
3990
3960
3960 | 42.5
42.6
41.8
42.6
42.2 | .875
.886
.871
.853
.856 | 30.0
20.8
29.7
20.6
20.5 | 2,959
2,958
2,958
2,955
3,003 | 5
5
5
5 | | 6965
5564
7899
7407
7178 | 6383
5652
7659
7429
7185 | .800
.834
.980
.932
.901 | 22.8
16.5
17.9
17.5
16.5 | 101.5
72.2
198.5
126.5
122.0 | 4.167
2.702
6.420
6.050
5.745 | .824
.598
.793
.803
.826 | .004
.004
.007
.006
.004 | .042
.051
.057
.041
043 | .978
.829
.906
.906
.925 | 1.67
.99
1,99
1.78
1.65 | 2.40
1.48
2.87
2.62
2.34 | .28
.22
.17
.17 | 3980
3801
3940
3924
3931 | 41.8
42.4
42.0
42.4
41.7 | .856
.846
.871
.679
.850 | 30,0
26,9
29,3
29,2
29,4 | 2.975
2,699
2.889
2.885
2.885 | 33354 | | 5826
5011
7508
7345
7060
6678
6002 | 6835
6017
7514
7359
7093
6891
6013 | .857
.755
.942
.923
.889
.839 | 15.5
11.1
12.8
12.6
11.8
10.9 | 111.5
81.2
124.8
121.2
113.0
104.7
68.4 | 4.932
5.212
6.308
5.987
5.564
4.756
3.045 | .812
.722
.803
.796
-786
.800
.633 | .004
.003
.004
.005
.005 | .046
.048
.040
.041
.040
.044 | .930
.883
.887
.908
.903
.915 | 1.38
.78
1.48
1.58
1.23
.99 | 1198
1.16
2.02
1.93
1.70
1.43 | .16
.13
.19
.19
.19 | 3921
3829
3908
3879
3845
3794
3464 | 42.1
42.1
41.1
41.3
41.0
41.8
42.0 | .827
.858
.869
.862
.848
.859 | 29.4
27.9
29.2
29.2
28.6
26.2 | 2.848
2.745
2.874
2.885
2.906
2.780
2.428 | 2004044 | TABLE I. - Continued. PERFORMANCE DATA (a) Continued. Inlet guide vanes open. | Run | Cop-
pressor
Reynolds
runber
index,
81
*17/81 | Altitude-
estaust
procesure,
PO:
18/eq ft | Filight
Hach
thumber,
Ho | Equiv-
slent
ambient-
sir
statis
tempers-
ture,
to, | Engine-
inlet
total
temper-
ature,
T1: | Engine-
inlet
total
pressure,
P ₁ ;
1b
Mg IT Abs | Compressor-
inlet total
pressure,
Pgr
1b
Eq IT 854 | Compressor-
outlet
total
tempera-
ture,
T3,
o, | Compressor-
outlet
total
pressure,
Ps;
1b
eq ft abs | Combustor-
inlet
inlet
pressure,
y
a,'
lb
aq ft abs | Turbine-
inlet
total
temper-
sture; | Turbine-
inlet
total
pressure,
Pg,
1b | Turbine-
outlet
total
tempera-
ture,
T _G , | Turbing-
outlet
total
pressure,
Par
1b
eq ft abs | Tail-
pips
total
tamper-
ature,
T ₇ ,
o _R | Tail-
pipe
total
pressure,
P,'
1b
aq fc abs | |-------------------------------|---|---|--------------------------------------|--|---|---|---|--|---|--|---|--|--|--|---|---| | | | | ····· | | | | Exhquat | -nossle ere | , 2.514 eq | ſt | | | | | | | | 22812 | 0.949
,938
,947
,949
,956 | 2050
2052
2053
2048
2048 | 0000 | 514
514
514
614
612 | 506
506
806
506
506 | 1945
1957
1962
1942
1969 | 1810
1857
1850
1858
1808 | 965
949
916
914
946 | 13478
13077
12082
12029
9881 | 13978
13918
11966
11926
8509 | 1940
1880
1763
1780
1627 | 12478
12478
11516
11473
9248 | 1596
1535
1412
1400
1201 | 4914
4115
5855
5839
5261 | 1533
1483
1392
1386
1220 | 4140
4034
5775
5788
3808 | | 17 M 85 17 | .956
.984
.984
.85 m | 2002
2085
2081
1008
1185 | .840
.806 | 613
669
710
441
440 | 607
617
348
143
503 | 1972
2058
2054
1879
1812 | 1911
2015
2014
1838
1776 | 848
750
780
969
958 | 9784
8689
6839
12509
12553 | 9050
5650
5613
10241
12418 | 1830
1438
1480
1950
1850 | 9278
5435
5578
11780
11965 | 1824
1237
1352
1549
1662 | 3271
2515
2520
5740
3875 | 1824
1814
1238
1500
1496 | 3210
P484
B498
3657
3790 | | 35858 | .855
.851
.897
.897
.548 | 1171
1171
1193
1198
777 | .80%
.799
.799
.806 | 448
446
446
446 | :01
500
501
809
499 | 179/
1794 -
1816
1828
1191 | 1763
1771
1786
1612
1172 | 84.2
806
856
723
868 | 19194
11177
8805
4900
4995 | 10065
11065
8739
4679
8226 | 1850
1893
1415
1050
1995 | 11627
10638
8573
4618
7914 | 1492
1331
1116
856
1651 | 3749
3448
2791
1730
2665 | 1452
1324
1108
832
1513 | 3664
3364
2660
1699
2504 | | いるので | .581
.581
.581 | 780
780
784
779
475 | .809
.803
.804
1,23 | 444
447
445
445
588 | 501
300
400
800 | 1900
1199
1194
1192
1193 | 1191
1191
1187
1187
1174 | 943
906
856
727
901 | 4772
7533
5601
3506
8511 | 8011
7279
5770
3287
8238 | 1683
1703
1415
1080
1807 | 7696
8892
5590
3111
7916 | 1482
1350
1111
844
1584 | 2505
2278
1798
1140
2529 | 1488
1539
1113
855
1500 | 2445
2217
1766
1127
2460 | | 68
61
70
71
78 | ,683
,685
,680
,681
,373 | 488
489
478
498
494 | 1.24
1.24
1.22
1.21
.806 | 388
387
382
589
441 | 505
506
516
518
488 | 1195
1194
1196
1206
757 | 1174
1179
1185
1904
748 | 944
911
840
792
968 | 7994
7548
8649
2835
8504 | 7888
7553
5696
6609
8667 | 1638
1670
1873
895
1930 | 7848
6991
5686
2457
5061 | 1458
1228
1076
682
1553 | 2451
2818
1484
865
1656 | 1440
1315
1065
590
1524 | 2378
2166
1646
648
1601 | | 73
74
76
76
77 | ,430
,571
,450
1371
,425 | 483
498
451
492
490 | .815
.798
.808
.809 | 301
646
584
643
335 | 443
500
445
488
446 | 747
757
754
756
761 | 734
747
741
747
740 | 867
940
863
904
808 | 5683
5107
5317
4674
4683 | 8681
8073
8289
4846
4538 | 1897
1883
1763
1715
1800 | 5454
4871
5085
4485
4556 | 1517
1510
1410
1357
1107 | 1744
1579
1833
1449
1401 |
1494
1454
1577
1548
1177 | 1702
1548
1548
1418
1418 | | 78
79
80
81 | .570
.307
.863
.863 | 446
446
310
308
304 | .782
.508
.975
.792
.815 | 446
444
386
387
438 | 501
509
448
447
498 | 754
748
489
467 | £5624 | 827
790
903
869
959 | 3640
1925
3487
3275
3200 | 3625
1917
3463
3246
3245 | 1459
1067
1920
1778
1617 | 3470
1815
5340
5125
5114 | 1128
847
1864
1455
1864 | 11.86
686
1086
1001
1009 | 1150
859
1819
1368
1508 | 1108
874
1044
974
987 | | 83
84
85
86
87 | .201
.208
.200
.244
.P27 | 296
204
216
205
208 | .830
.786
.821
.800 | 457
457
387
458
448 | 494
497
448
497 | 460
463
476
456
464 | 458
458
470
455
484 | 942
904
805
835
927 | 31 EL
2800
2001
2279
1985 | 5141
2859
2785
2785
2280
1214 | 1880
1715
1883
1443
1003 | 3010
2752
2677
2157
1144 | 1812
1383
1211
1121
879 | 954
876
856
683
435 | 1480
1348
1186
1134
870 | 943
886
885
875
755 | | 88
80
81
88 | 150
140
157
140
138 | 185
195
186
190
187 | .793
.795
.796
.802
,808 | 407
441
407
440
440 | 458
486
450
486
497 | 291
292
293
293
290
297 | 268
269
278
268
264 | 986
972
883
951
914 | 2006
2000
1971
1983
1778 | 2264
2045
1961
1950
1767 | 1988
9017
1850
1940
1797 | 9901
1956
1964
1871
1891 | 1596
1410
1485
1554
1400 | 643
660
595
602
543 | 1554
1804
1445
1557
1485 | 829
819
561
560
533 | | \$5
\$4,
65
66
87 | ,154
,154
,154
,154 | 184
184
188
197
192 | ,809
,800
,815
,455
,475 | 408
439
441
442
441 | 444
444
444
444
444
444
444
444
444
44 | 293
296
201
227
224 | 279
954
262
222
221 | 893
840
733
934
906 | 1712
1859
782
1484
1563 | 1701
1356
785
1641
1550 | 1.543
1490
1147
2007
1893 | 1435
1294
710
1616
1400 | 1259
1155
923
1657
1840 | 480
417
265
503
478 | 1919
1170
916
1585
1486 | 478
409
263
482
488 | | 96
98
100
101
102 | ,10b
,105
,104
,107
,124 | 188
180
187
183
184 | .476
.486
.487
.487 | 478
475
474
478
443 | 457
457
456
457
453 | 221
223
220
224
224 | 218
260
217
224 | 971
970
987
985
945 | 1545
1539
1501
1581
1514 | 1538
1838
1497
1497
1378 | 9050
9087
1990
1880
1860 | 1479
1479
1456
1825
1250 | 1638
1656
1866
1476
1386 | 478
478
485
436
406 | 1509
1835
1886
1486
1315 | 449
445
451
426
384 | | 103 | ,106
,106
,106 | 192
177
187 | ,180
,584
,539 | 477
484
472 | 497
488
489 | 225
225
218 | 290
292
237 | 881
786
773 | 1002
784
694 | 1,081
790
eps | 1,666
1,573
1,377 | 1014
768
663 | 196a
1129
1134 | 34.7
089
96.7 | 1234
1106
1126 | 341
266
267 | TABLE I. - Continued. PERFORMANCE DATA (a) Continued. Inlet guide vanes open. | Progine
speed,
N,
Type | Our-
rected
engine
speed,
H | Compressor-
inlet tip
Mach
number,
H | Engine
air
flow,
Ya,1'
lb/see | Corrected
air flow,
-/51
Wa,1-51
1b/mec | Com-
pressure
pressure
ratio,
Py/P ₁ | Con-
pressor
effi-
eistor,
7 ₆ | Compressor-
discharge
pressure-
loss ratio,
(Pg-P41/Pg | Ocmbes tor
pressure-
less
ratio,
74-78 | Combinetion offi eimey, | Combus-
tion
paras-
ster,
P475
Tb | Dombus-
tion
pares-
eter,
Ya,1 ² 7 ⁴ | Turbine
Reynolds
Rumber
Index,
5g | Cor-
rected
tambine
speed,
-/V ₃
rpm | Cor-
rected
turbine
gas
flow,
Wg. 5-/45
05
lb/see | Turbine
effi-
elency,
R | Corrected turbins setted by drop, AN, 45, 10-sec | Turbine
pres-
ence
ratio,
P _B /P _B | Burn | |--------------------------------------|---|--|---|---|---|---|--|--|---------------------------------------|--|--|---|--|--|---------------------------------------|--|--|----------------------------------| | | 1 | | | ··· | | ı - | Exhaust- | -nossle ar | m., P.81 | s sq rt | | | | | | | | | | 7945
7790
7417
7408
8665 | 5C55
7868
7512
7504
8750 | 1.010
1.000
.948
.941 | 134.3
151.3
195.8
195.0
108.1 | 144.2
141.8
134.5
154.4
114.7 | 8.934
6.751
6.195
4.194
4.892 | 0,805
,819
,834
,839
,852 | 0,015
,012
,010
,008 | 0.055
.054
.058
.058 | 0,975
,965
,884
,973
,948 | 13.5
12.9
11.5
11.5
8.64 | 20:8
19:5
17:5
17:4
18:2 | 1.24
1.27
1.87
1.08
1.18 | 4180
4143
4089
4087
3921 | 43.8
43.0
43.1
48.8
48.8 | 0,877
.878
.876
.877
.662 | 30.8
30.6
30.1
30.2
28.7 | 5,044
5,032
2,687
2,994
2,835 | 48
48
53
53
53 | | 6470
5489
5489
7941
7959 | 6748
5563
5548
5066
5064 | ,616
,696
,696
1,011
1,011 | 108.6
65.5
65.3
119.6
125.0 | 115.9
87.3
85.2
148.9
143.7 | 4.838
9.791
2.787
7.527
4.868 | .860
.711
.705
.835
.806 | ,010
,008
,008
,008
,011 | .027
.042
.042
.066
.067 | .978
.966
.965
.958
.975 | 8.66
4.96
5.04
12.7
12.5 | 15.3
7.85
7.80
17.8
18.7 | 1.18
.76
.74
1,17
1.18 | 3919
3359
3311
4203
4200 | 48,8
48,5
41,8
41,7
48,9 | .846
.844
.845
.869
.879 | 26,7
21,7
21.5
31.0
31.0 | 2,836
2,162
2,134
3,150
3,069 | 53
54
55
56
57 | | 7794
7429
6699
5473
7547 | 7935
7549
8618
5645
8104 | .995
.948
.855
.895
1.018 | 198.9
117.7
105.1
67.0 | 142.6
136.0
118.1
76.5
143.4 | 6.786
6.216
4.949
9.668
6.965 | .618
.635
.846
.741
.800 | .006
.006
.006
.004 | .057
.040
.048
.054
.058 | .968
.967
.994
1.023
.974 | 10.0
10.6
7.50
3.60
8.33 | 17.5
15.6
11.4
5.57
12.4 | 1.22
1.22
1.17
.94
.79 | 41.78
41.55
4090
3884
4181 | 48.9
48.7
43.1
45.4
45.0 | .876
.879
.865
.869
.864 | 31.0
31.0
30.0
97.0
21.0 | 3.109
3.067
3.077
2.684
3.067 | 28 25 28
28 22 28
28 22 28 | | 7790
7415
6678
6650
7888 | 7921
7547
6804
8424
8078 | .448
.853
.707
1.013 | 81.5
77.4
47.9
44.3
81.1 | 141.4
184.7
117.7
77.2
142.0 | 8.727
4.136
4.842
9.775
6.066 | .859
.841
.746
.811 | .008
.007
.005
.006 | .056
.036
.043
.054
,036 | .987
.978
.997
1.040 | 7.07
8.93
4.88
P.47
B.47 | 11.9
10.3
7.54
3.79
18.8 | .80
.80
.78
.61 | 4179
4157
4080
3875
4810 | 49,9
49,9
43,1
48,2
42,17 | .864
.860
.837
,865
,868 | 31,0
31,2
30,6
27,0
31,0 | 3.076
3.072
3.070
2.799
3.130 | 18882 | | 7788
7413
8878
5438
7845 | 7693
7606
8737
5463
8111 | .990
.948
.845
.684
1.017 | 19.9
17.0
85.7
. 40.3
59.0 | 139.9
154.8
115,1
70,4
148,4 | 8.701
8.156
4.862
2.547
7.007 | .622
.642
.661
.665
.797 | .005
.002
.004
.009 | ,059
,047
,045
,061
,039 | ,958
,966
,964
,964 | 5.00
7,08
5.23
1,98
5.40 | 11.5
10.1
7.09
9.78
7.83 | .82
.62
.65 | 435
436
444
445
475 | 42,1
42,2
40,6
42,0
42.5 | .570
.539
.823
.854
.667 | 31.4
31.1
31.1
39.9
30.9 | 3,190
3,192
3,305
3,038
5,083 | \$69
70
71
71 | | 7845
7788
7685
7408
6847 | 8599
7935
8834
7648
7494 | 1.078
.995
1.035
.947
.940 | 55.5
57.5
54.9
49.4
80.3 | 145.9
141.9
142.5
185.7
181.4 | 7.506
6.745
7.052
6.185
6.076 | .762
.806
.792
.835
.841 | .006
.007
.005
.006 | .058
.040
.038
.038 | .988
.954
.983
.976
.954 | 5.58
4.55
5.16
4.42
4.14 | 8.31
7.48
7.55
4.65
8,92 | .55
.51
.56
.50 | 4300
4171
4190
4118
4125 | 49.0
42.8
42.4
43.0
41.8 | .880
.880
.883
.858
.846 | 30,9
31,3
30,9
30,6
30,7 | 3,113
3,085
3,114
3,086
3,108 | 73
74
75
76
77 | | 8870
8488
7848
7819
7941 | 8789
5583
6671
5909
9125 |
.451
.493
1.075
1.089
1.018 | 48,0
24.4
34.9
35.4
39.9 | 115.1
68.7
163.7
140.6
142.0 | 4.508
2.580
7.435
7.009
6.964 | .838
.738
.780
.784
.765 | .007
.004
.007
.008 | .043
.053
.036
.036 | .970
.872
.980
.954
.945 | 3.17
1.61
3.63
3.19
3.31 | 4.78
9.11
6.00
4.87
4.86 | ,48
,35
,35
,31 | 4081
3828
4184
4170
4187 | 42.7
41.0
42.5
42.4
49.7 | ,838
,839
,854
,653
,880 | 30.2
25.3
30.8
30.9
30.4 | 3,089
2,681
3,194
3,194
3,085 | 78
79
80
81
81 | | 7795
7390
6938
6667
5504 | 7974
7559
7478
6813
5619 | 1.000
.947
.938
.854
.704 | 31.1
30.3
31.1
26.0
18.3 | 159,7
155.7
128.0
117.4
72.5 | 8.872
8.261
5.884
4.850
3.834 | .609
.833
.815
.848 | .006
.007
.006
.006 | .042
.041
.038
.041
.069 | .926
.990
.951
.998
.859 | 5.21
9.75
2.52
1.89 | 4.63
4.07
3,79
2.85
1.43 | .31
.31
.35
.30 | 4165
4111
4088
4038
3636 | 41.8
49.7
49.3
49.5
45.6 | .674
.658
.658
.651
.879 | 31.1
30.8
50.2
30.2
87.2 | 5,122
3,135
3,130
3,127
2,630 | 83
84
85
88
87 | | 7962
7963
7627
7771
7364 | 8166
8166
8130
7949
7845 | 1.062
1.084
1.017
.987 | 20.6
20.0
20.0
19.3
16.3 | 142.0
141.6
141.0
138.0
151.7 | 7.588
7.086
4.977
4.789
4.185 | .781
.870
.778
.764
.808 | .005
.007
.006
.006 | .036
.050
.042
.043 | .957
.983
.958
.980
.975 | 2.84
2.12
1.85
1.89
1.78 | 2.34
3.20
2.86
2.87
2.80 | .21
.19
.80
.19 | 4144
4100
8181
4089
4018 | 39.4
48,1
42.8
43.0
43.0 | .608
.848
.848
.802
.841 | 30.7
30.7
30.7
50.8
50.1 | 3.423
3,121
3,167
3,100
3,114 | 88
89
80
81
82 | | 4560
4544
6586
7951
7648 | 797)
6765
5637
8446
8106 | .01P
.851
.707
1.059
1.017 | 18,1
15.7
9,0
18,0
15,6 | 127,5
113,6
68,7
140,8
138,0 | 6,058
4,759
2,719
7,425
6,845 | .857
.811
.694
.744
.761 | .008
.009
.009 | .039
.048
.059
.059 | .987
.976
.746
.983
.986 | 1.42
1.19
.44
1.79
1.50 | 2,20
1,95
-83
2,55
1,33 | .21
.17
.13
.16
.15 | 401.7
5958
3748
4098
4053 | 40.6
45.6
39.6
42.0
42.1 | .787
.825
.840
.830
.852 | 50,1
29,6
26,6
30,6
30,4 | 3,357
3,103
2,913
3,912
3,108 | 95
96
95
96 | | 7904
7804
7742
7434
6904 | 9069
9058
7919
7899
7407 | 1.016
1.010
.983
.953 | 14.7
14.8
14.7
14.0
18.4 | 150,1
150,0
150,5
120,5
120,6 | 4.962
4.955
4.525
6.145
5.791 | .784
.773
.778
.782
.786 | .005
.002
.005
.004 | .058
.057
.041
.067 | .925
.953
.966
.184
.989 | 1.42
1.61
1.54
1.37
1.21 | 2.57
3.41
2.33
2.00
1.89 | .14
.16
.14
.14
.15 | 4002
4031
4006
5965
3962 | 48,1
42,9
43,5
43,1
43,5 | .866
.847
.841
.851
.851 | 30.4
30.2
30.1
30.0
29.7 | 5.087
5.084
5.100
5.039
5.101 | 18
100
101
102 | | 6634
8112
5784 | 6779
6940
5900 | .850
.782
.740 | 11.6
9.6
9.4 | 108.5
68.8
76.7 | 4.784
3.580
3.044 | .766
.748
.681 | .001
.008
.018 | .014
.069
.058 | ,902
,852
,841 | .98
.66
.56 | 1.44 | .13
.11
.16 | 5873,
5782
5585 | 42,2
43,4
43,8 | .858.
918.
039. | 29.3
27.2
25.4 | 2.822
2.822
2.550 | 103
104
106 | TABLE I. - Continued. PERFORMANCE DATA (a) Continued. Inlet guide vanes open. | Run | Com- pressor Reynolds number index, δ1 •1√θ1 | Altitude-
exhquet
pressure,
Po,
lb/sq ft | Plight
Mach
number,
Mo | Equiv-
alent
ambient-
air
static
tampera-
ture,
to,
o, | Engine-
inlet
total
temper-
ature,
T ₁ , | Engine- inlet total pressure, P1, 1b sq ft abs | Compressor-
inlet total
pressure,
P2'
1b
sq ft abs | Compressor-
outlet
total
tempera-
ture,
TS,
on | Compressor-
outlet
total
pressure,
P5:
1b
aq ft aba | Combustor- inlet total pressure, P4, lb sq ft abs | Turbine-
inlet
total
temper-
ature,
To
R | Turbine- inlet total pressure, p, 1b aq ft abs | Turbine-
outlet
total
tempera-
ture,
T6,
o | Turbine- cutlet total pressure, Pg, 1b sq ft abs | Tail-
pipe
total
temper-
ature,
T, | Tail-
pipe
tetal
pressure,
P7,
1b
sq ft abs | |--|---|--|--|--|--|--|---|--|---|---|--|---|--|--|--|---| | | | | | | | | Exhaust- | nozzle area | , 2.894 sq f | t | | | | | | | | 108
107
108
109
110
111
112
113 | 0,938
.942
.942
.958
.978
.888
.688 | 2053
2059
2050
2056
2055
1150
1163 | .805
.805 | 514
514
515
5111
513
445
447 | 505
506
506
506
506
508
503
504 | 1933
1942
1944
1976
2004
1808
1805 | 1901
1912
2114
1957
1997
1771
1771 | 956
942
909
844
747
949
933 | 15079
12684
11740
9605
5727
12108
11697 | 12896
12537
11627
9587
5709
11994
11690 | 1807
1750
1840
1455
1560
1756
1680 | 12449
12084
11177
9169
5457
11526
11111 | 1445
1400
1504
1151
1183
1584
1584 | . 3851
3772
3847
5063
2424
8459
3543 | 1405
1558
1272
1145
1140
1555
1292 | 5762
5664
5458
3032
2403
5365
3847 | | 111
112
113
114
115 | .888
.888
.890
.891
.890 | 1180
1183
1191
1188
1194 | .805
.802
.798
.803
.795 | 445
447
447
448
450 | 505
504
504
506
507 | 1806
1805
1818
1815
1810 | 1771
1771
1785
1794
1800 | 949
953
899
832
720 | 12106
11697
10695
8432
4576 | 11994
11590
10604
8363
4558 | 1756
1680
1550
1315
1010 | 11526
11111
10174
7981
9275 | 1364
1354
1210
1011
791 | 3458
3343
3061
2420
1588 | 1335
1292
1194
1005
798 | 3363
3247
2981
2382
1562 | | 116
117
118
119
120 | ,585
,585
,585
,580
,580 | 775
774
776
769
778 | .814
.815
.811
.815
.811 | 445
445
445
446
448 | 504
504
504
505
507 | 1197
1198
1198
1189
1188 | 1172
1172
1177
1175
1192 | 950
935
901
832
721 | 7955
7702
7050
5529
5068 | 7905
7845
8996
5508
1015 | 1750
1700
1560
1325
3048 | 7581
7351
6709
5244
2877 | 1362
1327
1209
1013
786 | 2283
2202
2011
1580
1045 | 1547
1307
1199
1015
801 | 2208
2135
1965
1852
1029 | | 121
122
123
124
125 | ,596
,591
,582
,582
,579 | 488
479
468
477
482 | 1.22
1.22
1.24
1.25
1.21 | 384
384
362
386
391 | 498
499
500
505
506 | 1907
1200
1195
1199
1188 | 1181
1179
1186
1072 | 946
931
899
629
714 | 8190
7891
7234
5650
2996 | 8080
7882
7165
5822
2970 | 1775
1707
1577
1500
867 | 7741
7557
6865
5349
2786 | 1387
1532
1216
990
649 | 2521
2244
2049
1585
860 | 1566
1317
1218
992
670 | 2256
2167
1987
2535
635 | | 126
127
128
129
130 | .427
.427
.370
.368
.870 | 478
489
498
485
503 | .818
.799
.809
.795 | 392
392
447
439
448 | 444
504
497
504 | 497
490
758
748
761 | 727
751
744
730
748 | 891
855
982
928
936 | 5449
51.57
501.0
4906
4845 | 5426
8109
4981
4889
4819 | 1770
1627
1765
1685
1703 | 5217
4908
4774
4875
4615 | 1396
1290
1419
1340
1544 | 1558
1468
1441
1511
1594 | 1575
1255
1554
1297
1509 | 1506
1416
1395
1292
1546 | | 131
132
133
134
135 | .371
.570
.428
.378 | 495
498
480
502
501 | .803
.798
.615
.806
L794 | 440
447
391
441 | 497
504
445
498
500 | 757
757
485
769
789 | 751
745
751
761
757 | 897
905
792
826
716 | 4514
4442
4366
3566
1936 | 4480
4405
4356
3553
1926 | 1570
1573
1595
1395
1016 | 4254
4259
4165
5560
1880 | 1232
1224
1069
1016 |
1301
1259
1246
1056
674 | 1207
1212
1067
1016
800 | 1264
1224
1204
1016
664 | | 136
137
138
139
140 | .267
.269
.267
.229
.230 | 298
306
298
307
314 | .828
.819
.826
.809
.795 | 390
391
391
441
444 | 445
445
444
499
500 | 487
475
486
472
476 | 459
458
459
468
472 | 892
857
848
950
951 | 5395
5210
5141
5112
5125 | 3577
5195
3126
3094
3111 | 1790
1655
1613
1793
1800 | 3234
3064
2995
2961
2976 | 1417
1312
1275
1406
1409 | 973.
920
897
897.
\$05. | 1388
1278
1248
1390
1398 | \$40
889
866
869
875 | | 141
142
143
144
145 | .227
.227
.225
.267
.228 | 302
500
301
301
509 | .813
.802
.806
.809
.794 | 441
443
445
392
444 | 499
500
500
443
500 | 466
470
461
463
468 | 461
486
456
457
464 | 958
932
908
796
833 | 3039
3000
2761
2754
2176 | 3090
2982
2737
2722
2359 | 1780
1730
1830
1413
1355 | 2895
2649
2627
2506
2059 | 1565
1358
1261
1096
1040 | 870
864
769
778
829 | 1356
1359
1254
1093
1046 | 844
857
768
750
815 | | 146
147
148
149
150 | .229
.132
.148
.158
.158 | 320
179
188
195
198 | .778
.815
.795
.786
.777 | 449
439
441
443
444 | 503
497
497
498
498 | 477
277
285
293
295 | 477
266
274
263
289 | 727
962
942
912
825 | 1204
1945
1888
1769
1301 | 1196
1936
1860
1749
1294 | 1080
1860
1767
1847
1397 | 1135
1850
1788
1872
1833 | 265
1505
1422
1319
1064 | 427
549
529
502
579 | 839
1442
1366
1274
1021 | 415
531
513
487
366 | | 151
152
153
164
165
156 | .135
.105
.125
.119
.112 | 192
193
193
200
204
202 | .777
.388
.450
! .499
! .478 | 445
483
479
481
474
487 | 499
496
497
498
488
500 | 286
214
219
226
258
222 | 265
207
212
219
235
219 | 757
968
946
913
886
819 | 851
1445
1441
1501
1917
913 | 845
1442
1597
1299
1211
906 | 1173
1925
1837
1697
1488
1410 | 804
1370
1340
13257
1161
867 | 915
1862
1484
1386
1880
1830 | 270
421
408
585
587
500 | 922
1506
1432
1524
1197
1121 | 255
406
386
375
357
293 | TABLE I. - Continued. PERFORMANCE DATA (a) Continued. Inlet guide vanes open. | Engine
speed,
N,
rps | Cor-
rected
engine
speed,
W | Compressor-
inlet tip
Kach
number,
Ng | Engine
air
flow,
Wa,1,
lb/sec | Corrected air flow, $\sqrt{\theta_1}$ Wa, $1 \frac{\theta_1}{\theta_1}$ lb/sec | Com-
pressure
pressure
ratio,
P3/P1 | Cum-
pressor
effi-
eisnoy,
n _o | Compressor-
discharge
pressure-
loss ratio,
(P3-P4)/P3 | Combustor pressure-
loss rutio, P4-P5 P4 | Combus-
tion
effi-
ciency,
n | Combus-
tion
pares-
eter,
P4T5
b | Combus-
tion
param-
eter,
Wa,1 ^T /K | Tersine
Reynolds
number
index,
05 | Cor-
reated
turbine
speed,
N
-/85 | rected turbine gas flow, WS.57/85, 5 1/85, 1b/890 | Turbine
effi-
clency,
n _t | Corrected
turbine
enthalpy
drop,
AH, eg,
Btu
Ib-seq | Turbina
pras-
sure
ratio,
P _B /P ₈ | Rum | |--|--|---|--|--|--|---|--|---|--|---|--|---|--|---|---|---|--|--| | | | | | | | | Exhaust | -nomele ar | a, 2.69 | eq ft | | | | | | | | | | 7955
7788
7490
6586
5498 | 8065
7895
7529
6778
5568 | 1,011
,990
,943
,850
,868 | 135.2
131.7
125.5
106.9
68.1 | 143.9
141.6
134.8
115.0
71,1 | 6.765
6.521
8.039
4.851
2.858 | 0.804
.810
.832
.845
.735 | 0.014
.010
.001
.005
.005 | 0,035
,036
,039
,041
,044 | 0.963
.958
.959
.962 | 12.8
12.1
10.9
8.49
4.84 | 18.7
17.9
16.0
12.5
7.75 | 1.31
1.34
1.33
1.25
,81 | 4314
4289
4220
4054
3426 | 42.8
49.8
49.5
49.2
42.6 | 0.879
.880
.864
.651
.841 | 52.3
59.5
59.0
50.1
29.9 | 5.255
5.204
5.152
2.974
2.251 | 106
107
108
109
110 | | 7953
7786
7415
6678
5411 | 8078
7901
7585
6763
5475 | 1.015
,991
.944
.848
,887 | 124.8
122.8
117.7
101.0
63.9 | 144.1
141.8
135.5
116.2
75.6 | 6,705
5,480
5,802
4,848
2,529 | .804
.891
.635
.848
.722 | ,006
,009
,008
,008 | .039
.041
.041
.048
.087 | .941
.957
.975
.998
1,016 | 11.7
11.1
9.67
7.04
8.29 | 15.6
15.9
14.1
10.9
5.09 | 1.29
1.29
1.30
1.22 | 4399
4373
4352
4229
3915 | 49.3
42.4
42.8
49.5
43.5 | .885
.877
.859
.884
.870 | 53.0
53.0
53.0
52.0
27.0 | 5.353
5.323
5.323
3.298
2.710 | 111
112
113
114
115 | | 7848
7765
7411
1674
8448 | 8067
7910
7591
8788
5508 | 1.017
.962
.945
.848
.881 | 82.5
80.8
77.2
65.7
42.3 | 145.7
141,1
134.7
117.9
73.9 | \$.846
5.445
5.900
4.850
2.561 | .802
.814
.832
.848
.725 | .006
.007
.006
.004
.007 | .041
.041
.041
.048 | ,972
,952
,971
1,008
1,008 | 7,67
7,52
6,42
4,50
2,29 | 11.1
10.6
9.25
6.77
3.39 | .84
.86
.60 | 4378
4354
4316
4213
3929 | 42.7
42.6
42.4
42.9
43.2 | .880
.877
.865
.851
.863 | 53.0
53.0
53.0
51.0
98.0 | 5.521
5.529
3.537
5.519
2.755 | 116
117
118
119
120 | | 7955
7784
7441
6686
5470 | 6121
7945
7581
6791
5540 | 1.018
.997
.951
.852
.685 | 82,9
82,3
78.4
67,7
45,1 | 142.4
142.2
156.2
117.7
75.8 | 6.727
8.876
5.064
4.71P
2.522 | .871
.815
.835
.855
.785 | ,005
,001
,010
,005
,009 | .044
.044
.048
.048
.068 | .984
.890
.981
.892 | 7,97
7.84
6.53
4.73
2.07 | 11,8
10.8
9,53
6,71
2.84 | ,85
,86
,85
,83 | 4358
4348
4313
4268
4253 | 42.4
42.3
42.4
41.7
41.7 | .876
.855
.856
.859 | 53.0
52.9
52.9
52.4
50.9 | 3.359
3.369
3.349
3.380
3.239 | 121
122
123
124
125 | | 7954
7519
7958
7794
7792 | 8811
8238
8071
7864
7907 | 1,060
1,053
1,018
,999
,999 | 84,8
54,1
51,7
50,8
50,6 | 144.8
142.4
142.5
140.9
158.7 | 7.364
5.914
5.609
8.575
6.364 | .758
.791
.798
.814
.802 | ,004
,006
,008
,008
,008 | .058
.040
.048
.038
.041 | ,984
,987
,934
,941
,997 | 5,44
4.89
4.85
4.72
4.43 | 7.52
6.78
2.69
6.59
2.56 | ,57
,59
,58
,54
,54 | 4361
4346
4363
4372
4347 | 41.5
41.8
42.5
41.8
42.5 | .856
.861
.886
.834
.884 | 39.7
52.6
33.0
35.2
33.0 | 3.349
3,339
3,313
3.866
3.309 | 126
127
128
129
130 | | 7420
7400
6950
6669
5488 | 7582
7510
7501
6809
5530 | ,951
,948
,941
,854
,693 | 48.4
50.5
43.4
24.9 | 155.5
155.5
155.4
117.1
58.1 | 5.963
8.888
5.698
4.637
2.881 | .820
.818
.838
.831
.707 | .008
.008
.007
.004
.006 | .044
.040
.059
.049
.065 | ,963
,960
,972
1.005 | 4.17
4.06
3.76
2.94
1.51 | 5.88
2.50
6.39
4.41
1.98 | .54
.63
.60
.51 | 4509
4292
4269
4207
3928 | 42.1
42.4
42.1
43.4
40.1 | .873
.854
.859
.861
.868 | 33.0
33.0
52,9
31.9
87.8 | 3.993
3.351
3.348
3.263
2,701 | 131
132
135
134
138 | | 7964
7814
7505
7930
7905 | 8820
8241
8115
8087
8054 | 1,081
1,085
1,018
1,014
1,010 | 84.8
34.3
33.9
51.5 | 145.7
141.8
142.4
159.8
157.4 | 7,270
6,756
6,740
6,593
6,871 | .748
.775
.785
.782
.782 | .005
.005
.006
.006 | .042
.041
.042
.045
.045 | .968
.968
.961
.975 | 3.52
3.01
2.92
3.05
5.11 | 4.83
4.38
48.3
4.42
4.40 | .36
.36
.38
.38 | 4556
4515
4501
4517
4294 | 42.6
42.5
42.7
42.2 | .863
.840
.821
.868
.869 | 52.4
52.4
52.2
52.7
52.5 | 3,350
3,350
3,359
5,301
3,296 | 136
137
138
139
140 | | 7785
7775
7420
6924
6674
| 7949
7982
7550
7494
8800 | .997
.963
.948
.940
.863 | 81,6
81,3
89,3
81,2
85,7 | 140.7
139.4
139.0
131.6
113.9 | 6.521
6.383
5.989
5,905
4.650 | .797
.801
.824
.825
.621 | ,006
,006
,006
,004
,003 | .041
.045
.040
.043
.051 | .985
.958
.977
.969
.990 | 2.82
2.87
R.59
2.40
1.85 | 4.19
3.67
3.41
2.69 | ,39
,39
,32
,37
,31 | 4295
4508
4292
4237
4163 | 42.8
42.9
42.0
41.8
42.6 | .861
.855
.855
.832
.845 | 32.6
52.4
52.1
32.1
51.7 | 5,526
3,297
5,330
5,348
5,275 | 141
142
143
144
145 | | 5472
7970
7771
7449
6547 | 5558
8144
7841
7806
5684 | .697
1.098
.996
.964
.838 | 17.4
19.1
19.0
18.3
14.8 | 75,5
142.4
137.7
129,7
104.2 | 2.594
7.022
8.604
6.014
4.410 | .578
.785
.781
.797
.800 | .007
.006
.001
.007
.006 | .054
.044
.052
.044
.047 | .877
.935
.919
.920 | 1.89
1.85
1.69
1.14 | 1.45
2.75
2.59
2.33
1.51 | .19
.19
.20 | 3867
4262
4269
4227
4124 | 48.0
41.8
42.0
41.7
40.7 | .885
.861
.883
.857
.855 | 27.4
33.0
33.0
32.0
31.0 | 2,688
3,369
3,360
3,331
3,265 | 148
147
148
149
150 | | 5786
7938
7714
7369
8915
6348 | 5900
6104
7883
7583
7060
6568 | .740
1.016
.989
.943
.686 | 10.5
14.3
14.1
13.8
13.8
10.5 | 75.8
138.8
135.1
125.9
119.8
98.3 | 2,976
6,782
6,397
5,767
5,113
4,113 | .704
.760
.765
.771
.783
.776 | .009
.002
.003
.005
.006 | .046
.050
.041
.040
.041 | .895
.935
.916
.935
.929
.872 | 1.47
1.41
1.21
1.08 | 2,15
2,02
1,83
1,68
1,16 | .14
.19
.19
.19
.21 | 3899
4176
4149
4118
4202
3885 | 41.5
42.4
41.6
45.2
42.4
43.5 | ,858
,882
,863
,888
,837 | 32.0
32.0
31.0
33.0 | 2,978
3,254
3,277
3,213
3,164
2,890 | 151
152
153
154
156
156 | TABLE I. - Continued. PERFORMANCE DATA (a) Continued. Inlet guide vanes open. | Run | Com-
pressor
Reynolds
number
index,
51 | exhaust | Flight
Mach
mader,
No | Equivalent ambient air static temperature, to, and a static temperature. | Engine-
inlet
total
temper-
ature,
T1' | Engine-
inlet
total
pressure,
Pl'
1b
sq ft abs | Compressor-
inlet total
pressure,
P2,
1b
sq ft abs | Compressor-
outlet
total
tempera-
ture,
73' | Compressor-
outlet
total
pressure,
P3,
1b | Combustor-
inlet
total
pressura,
P4,
ib
sq ft abs | Turbine- inlet total temper- ature, T5, R | Turbine- inlet total pressure, P5, 10 sq ft abs | Turbine- outlet total tempera- ture, Tg, OR | furbine- outlet total pressure, Pe, lb | Tail-
pipe
total
temper-
ature,
7,
oR | Tail- pipe total pressure P, 1b sq ft abs | |--|---|--|--|--|---|--|---|--|--|---|---|---|---|---|---|---| | | | | | | | | Exhaust- | ozzle area, | 5.588 sq ft | | L | L | L | I | · · · · · · · · · · · · · · · · · · · | | | 157
159
159
160
161 | 1.051
.941
.959
.970
1.000 | 2053
2051
2060
2057
2057 | 0 0 0 | 512
511
509
508
502 | 503
503
501
501
500 | 1933
1937
1957
1976
2024 | 1891
1911
1935
1958
2017 | 938
923
891
627
734 | 12578
11852
10992
8010
5648 | 12287
11750
10684
8974
5615 | 1573
1525
1427
1280
1223 | 11775
11274
10448
6533
5352 | 1195
1145
1062
958
1016 | 5171
2969
2825
2514
2259 | 1174
1138
1064
945
999 | 2988
2780
2664
2447
2221 | | 162
163
164
165
166 | .992
.985
.899
.899 | 2057
2051
1191
1190
1178 | 0
0
.793
.795
.812 | 504
505
442
441
442 | 502
504
497
497
500 | 2025
2037
1802
1804
1816 | 2017
2036
1772
1776
1793 | 735
666
927
914
883 | 5628
3974
11491
11191
10370 | 5802
3984
11415
11121
10500 | 1223
1263
1550
1500
1385 | 5335
3794
10933
10651
9859 | 1019
1128
1171
1150
1031 | 2235
2150
2821
2753
2544 | 998
1114
1168
1120
1026 | 2215
2140
2418
2580
2178 | | 167
168
169
170
171 | .920
.880
.911
.653 | 1255
1201
1193
794
788 | .786
.792
.798
.803 | 450
451
438
415
416 | 505
507
494
488
469 | 1886
1815
1816
1215
1205 | 2049
1797
1907
1194
1185 | 887
827
705
895
884 | 9637
8001
5058
7845
7730 | 9568
7969
5027
7884
7681 | 1385
1170
863
1557
1503 | 9138
7631
4721
7670
7548 | 1050
851
841
1181
1135 | 2581
1942
1432
1837
1904 | 1025
853
649
1167
1322 | 2215
1756
1392
1694
1634 | | 172
175
174
175
176 | .835
.807
.802
.594
.585 | 786
786
786
484
483 | .800
.800
.800
1.232
1.239 | 421
455
440
385
584 | 475
488
496
499
502 | 1198
1197
1213
1208
1205 | 1181
1185
1209
1196
1192 | 855
797
691
813
813 | 7032
5529
2652
5403
5319 | 8988
5515
2852
5381
5299 | 1373
1153
867
1160
1158 | 5677
5228
2681
5087
5009 | 1026
849
867
855
850 | 1725
1349
908
1314
1285 | 1022
852
675
856
855 | 1478
1221
891
1140
1091 | | 177
178
179
180
181 | .579
.429
.431
.432
.437 | 492
487
491
492
488 | 1.223
.907
.804
.604 | 389
395
395
395
390 | 508
446
448
448
442 | 1201
747
751
753
754 | 1194
732
736
739
741 | 744
861
862
828
762 | 3897
5198
5041
4692
3913 | 3868
5162
5014
4661
3896 | 975
1585
1520
1385
1177 | 3444
4943
4799
4461
3710 | 1208
1208
1152
1036
864 | 879
1274
1238
1141
947 | 840
1193
1139
1031
866 | 780
1093
1062
979
821 | | 182
185
184
185
186 | .434
.958
.979
.278 | 491
293
332
333
333 | .804
.821
.780
.777
.781 | 391
396
406
405
406 | 442
449
485
484
454 | 751
456
496
498
498 | 747
435
468
490
492 | 654
 | 2368 | 2353
 | 830 | 2208 | 612
1216
1217
1171
1062 | 82)
774
814
784
758 | 821
1201
1202
1158
1056 | 899
664
704
677
635 | | 187
188
188
190
191 | .265
.258
.188
.189 | 504
291
254
249
250 | .802
.830
.705
.719
.719 | 394
386
703
728
720 | 445
439
468
489
470 | 484
457
351
351
348 | 441
447
349
348
346 | | | | | | 877
641
1295
1830
1121 | 576
401
544
525
482 | 879
850
1273
1212
1109 | 506
586
477
481
425 | | 192
193
194
196
196
196 | .189
.189
.168
,155
.153 | 255
249
259
254
254
253 | .693
.719
.399
.368
.377 | 706
722
417
404
405
398 | 472
472
457
485
484
483 | 352
348
289
263
280
280 | 349
346
289
380
278
278 | | | | | | 905
793
1355
1252
1098 | 405
453
425
401
362
31.6 | 903
797
1329
1214
1086 | 372
411
383
367
333
506 | TABLE I. - Continued. PERFORMANCE DATA (a) Concluded. Inlet guide vanes open. | Engine
speed,
N,
rpm | Corrected engine speed, H -/81 | Compressor-
inlet tip
Mach
number,
Mg | air
flow, | Corrected air flow, | Com-
pressor
pressure
ratio,
P ₃ /P ₁ | Com-
pressor
effi-
oiency,
n | Compressor-
discharge
pressure-
loss ratio,
(P3-P4)/P5 | Combustor
pressure-
loss
ratio,
P4-P5
F4 | Combus-
tion
effi-
ciency,
Pb | Combus-
tion
param-
eter,
P4T5
Vb | Combus-
tion
param-
etar,
Wa,1 ¹⁷ 7* | Turbine Reynolds number index, 55 -5-/85 | Corrected turbine speed, N Ves rpm | Cor- rected turbine gas flow, Wg,57/95 5 1b/sec | offi-
alenay,
N _t | Corrected
turbine
enthelpy
drop,
AH,/0g,
Btu
lb-sec | Turbine
pres-
sure
ratio,
P ₅ /P ₈ | Run | |--|--|---|--|--|---|--
--|---|---|--|---|---|--------------------------------------|---|---------------------------------------|---|--|--| | | | | | | | | Exhaust | :-nossle ar | ea, 3.6 | 38 sq ft | | | | | | | | | | 7949
7779
7411
6667
5489 | 6074
7900
7543
6766
5592 | 1.012
.991
.948
.851
.701 | 135,8
131.7
127.4
110.4
70,7 | 144.2
141.6
155.3
116.1
72.5 | 6.404
6.119
5.617
4.560
2.790 | 0.800
.802
.815
.850
.725 | 0,009
,009
,010
,004
,005 | 0.040
.041
.040
.049
.047 | 0,949
,988
,988
,987
,983 | 11.4
10.6
9.41
7.38
4.51 | 15.7
15.0
13.6
10.4
7.06 | 1.48
1.46
1.44
1.40 | 4610
4686
4513
4507
3599 | 42.1
42.5
42.8
42.7
43.0 | 0.880
.860
.874
.893
.878 | 35.9
35.8
35.3
33.4
24.8 | 3.713
3.796
3.887
3.384
2.391 | 157
158
189
160
161 | | 5492
4583
7926
7790
7424 | 5564
4661
8099
7960
7564 | .700
.584
1.016
.998
.949 | 72.5
48.2
126.2
124.5
119.6 | 75.6
49.4
145.0
142.7
156.7 | 2.779
1.951
8.577
8.205
5.710 | .729
.654
.798
.808
.836 | .008
.003
.007
.007 | .048
.043
.042
.042
.043 | .979
.981
.981
.965
.966 | 4.44
5.50
10.4
10.1
8.97 | 7.14
5.37
14.6
15.9
12.3 | .90
.62
1.39
1.41
1.44 | 5601
2965
4627
4525
4882 | 45.6
42.1
42.4
42.1
41.9 | .683
.633
.852
.852
.859 | 24.4
18.4
35.0
35.0
35.8 | 2.587
1.765
5.876
5.868
5.876 | 162
163
164
165
166 | | 7411
6701
5504
7926
7797 | 7513
6780
5642
8347
8202 | .942
.850
.708
1.047
1.029 | 122.7
102.4
75.9
69.0
86.2 | 136.0
118.0
64.1
147.4
144.2 | 5.112
4.408
2.787
8.550
8.428 | .778
.829
.796
.773
.788 | .007
.004
.008
.008
.008 | .045
.065
.061
.040
.048 | .995
1.001
1.000
.998
.974 | 7.55
6.26
5.46
6.92
6.79 | 12.6
8.75
4.79
10.4
9.60 | 1.33
1.34
1.18
.95 | 4580
4519
4290
4619
4625 | 46.4
43.1
42.1
45.3
42.4 | .912
.877
.871
.852
.854 | 35.7
35.7
31.4
36
38 | 3.541
3.877
3.297
5.837
5.860 | 167
168
169
170
171 | | 7407
6653
5328
6687
6653 | 7742
8861
5450
5819
6765 | .971
.860
.683
.885 | 83.0
70.7
49.2
68.8
67.5 | 140.3
121.2
72.0
118.2
118.5 | 5.870
4.619
2.351
4.478
4.414 | ,817
.863
.702
.864
.848 | .009
.003
.007
.004
.004 | .049
.052
.060
.085
.055 | .964
.977
.955
1.038
.994 | 5.78
4.25
1.89
4.26
4.21 | 8.49
5.03
2.84
5.89
5.75 | .97
.95
.88
.91
.90 | 4592
4520
4143
4530
4511 | 42.8
42.8
42.8
42.8 | .848
.844
.858
.850
.849 | 35
38
29
35.3
35.0 | 5.874
5.878
2.951
5.871
5.905 | 172
173
174
175
176 | | 5843
7855
7795
7420
8888 | 5918
8583
8409
8004
7245 | ,742
1,076
1,064
1,004
,909 | 52.4
55.7
55.5
54.3
49.7 | 91,2
146.3
145.0
141.8
128.7 | 3.078
6.958
6.712
6.231
5.190 | .802
.754
.769
.797
.897 | .008
.007
.005
.007
.004 | .061
.042
.043
.043 | .913
.990
.982
.991
1,004 | 2,80
4.84
4.58
4.05
5.09 | 5.35
6.65
6.32
5.60
4.50 | .84
.82
.82
.85
.66 | 4522
4596
4599
4593
4498 | 41.5
41.9
42.1
42.1
42.8 | .845
.836
.842
.842
.851 | 58.0
35
38
36
36,4 | 3.918
3.880
3.876
3.909
3.817 | 177
178
178
180
181 | | 5492
7958
7958
7778
7384 | 5951
8654
8499
8314
7895 | .746
1.073
1.068
1.045 | 35.0 | 90.9 | 5.153 | .811 | .008 | .082 | 388 | 1.80 | 2.17 | | 4562 | 41.8 | .859 | 32.7 | 3.555 | 182
183
184
185
186 | | 6685
5598
7958
7786
7386 | 7219
8067
8380
8191
7782 | .905
,765
1,051
1.027
.975 | | | | | | | ~~~~ | | | 788 | | | | | #####
#####
#####
| 187
188
189
190
191 | | 6670
6782
6008
7640
7197
6506 | 6998
6556
8440
8071
7612
8888 | ,877
,822
1,058
1,012
,955
,864 | | | | ***** | | | | | | | | | | | | 192
193
194
195
196
196 | TABLE I. - Continued. PERFORMANCE DATA (b) Inlet guide vanes closed. | Run | Com- pressor Reynolds number index, 51 -1-1 | Altitude-
scheust
pressure,
p ₀ ,
lb/sq ft | Flight
Mach
mumber,
Mo | Equivalent ambient air static temperature, to, PR | Engine-
inlet
total
temper-
ature,
T ₁ ,
o _R | Engine- inlet total pressure, P1, 1b aq ft abs | Compressor-
inlet total
pressure,
P ₂ ,
lb | Compressor-
outlet
total
temper-
ature,
T ₃ ,
o _R | Compressor-
outlet
total
pressure,
P3'
1b
sq ft abs | Combustor-
inlet
total
pressure,
P ₄ ,
lb | Turbine-
inlet
total
temper-
ature,
To
oR | Turbine- inlet total pressure, P5: lb sq ft abs | Turbine-
cutlet
total
tempera-
ture,
T6,
aR | Turbine- outlet total pressure, Ps, 1b mq ft abs | Tail-
pipe
total
tomper-
ature,
T7'
oR | Tail- pipe total pressure, P7, 1b sq ft abs | |----------------------------------|---|---|--|---|--|---|---|---|---|---|---|---|---|--|--|--| | L | | | | • | | | Exhaus | t-possle ar | a, 2.388 sq | ft | | | | | | | | 193456 | 0.950
.949
.949
.950
.931 | 2048
2038
2045
2038
2034
1164 | 0
0
0
0
0,821 | 521
.821
522
521
520
449 | 517
518
520
520
519
509 | 1997
2000
2020
2028
2027
1811 | 1986
1993
2018
2028
2027
1801 | 845
772
702
658
614
822 | 8285
6575
4848
3627
3135
7167 | 8226
6555
4842
3516
5111
7079 | 1507
1340
1240
1263
1253
1347 | 7892
6263
4616
3379
3023
6799 | 1252
1114
1102
1151
1184
1064 | 2972
2632
2380
2212
2161
2285 | 1246
1108
1070
1135
1170
1056 | 2899
2588
2357
2202
2153
2228 | | 7
8
9
10
11
12 | .861
.860
.569
.358
.362
.360 | 1166
1153
800
489
496
497 | .613
.819
.796
.794
.803
.797 | 450
450
458
455
455
455 | 809
510
514
812
514
513 | 1800
1789
789
750
757
767 | 1792
1782
785
746
754
783 | 783
707
837
793
754
712 | 6355
4864
3069
2675
2294
1879 | 8584
4542
3038
2867
9281
1873 | 1203
967
1400
1243
1107
990 | 6015
4275
2912
2535
2160
1768 | 958
765
1096
978
875
788 | 2043
1636
964
866
769
689 | 938
769
1102
972
873
793 | 2000
1597
958
845
752
875 | | | | | | | | | Exhaus | t-nossle ar | aa, 2.514 sq | ſt | | | | | | | | 15
14
15
16
17 | 0.948
.950
.952
.953 | 2058
2069
2061
2058
2051 | 00000 | 521
521
521
521
521
519 | 517
517
517
517
517 | 1995
2000
2005
2008
2027 | 1981
2189
1990
1998
2022 | 907
894
865
814
701 | 9295
9147
8691
7717
4901 | 9225
9070
8649
7696
4893 | 1767
1727
1820
1450
1250 | 8858
8708
8306
7384
4852 | 1452
1387
1303
1182
1105 | 3162
3136
3045
2840
2388 | 1421
1365
1304
1185
1078 | 3088
3038
2968
2788
2371 | | 18
20
21
22 | .400
.399
.398
.387 | 491
494
494
498 | 0.802
.802
.800
.800 | 418
420
423
429
439 | 472
474
477
484
495 | 750
754
765
768
757 | 745
748
748
751
758 | 858
845
614
772
670 | 3805
3523
3285
2803
1757 | 3587
3504
3264
2895
1726 | 1615
1850
1450
1243
917 | 3436
3359
3129
2764
1623 | 1280
1280
1122
976
759 | 1104
1079
1010
914
651 | 1265
1281
1122
972
742 | 1075
1050
984
894
638 | | | | · | | | l | لـحســـا | Exheus | t-nozele ar | a, 2.694 sq |
ſt | | L | | | | | | 25
24
25
25
27 | 0.432
.432
.432
.432
.432 | 489
499
495
499
481 | 0.808
.793
.798
.790
.804 | 394
398
396
396
396 | 448
448
448
448
447 | 751
755
761
758
736 | 746
750
746
749
754 | 829
810
776
721
647 | 3644
3511
5425
2911
2174 | 5617
5485
5402
2900
2172 | 1515
1450
1334
1147
910 | 3465
5338
3261
2761
2048 | 1152
1129
1027
872
704 | 1045
1007
965
862
706 | 1170
1119
1025
878
711 | 1012
975
934
859
890 | | | | | | | | | Exhaus | t-nossle ar | 14, 3.688 sq | ſŧ | | | | | | | | 28
29
30
31
32
33 | 0.954
.960
.969
.964
.972
.407 | 2075
2080
2074
2077
2070
487 | 0
0
0
0
0
0,809 | 522
521
520
518
516
412 | 518
517
516
515
514
488 | 2021
2027
2022
2022
2030
2039
749 | 2005
2012
2008
2020
2032
742 | 888
872
944
798
753
834 | 8605
8450
8092
7273
5825
3541 | 8541
8413
8035
7244
5813
3315 | 1455
1420
1340
1240
1150
1533 | 8166
8051
7678
6897
5510
3156 | 1158
1106
1049
980
951
990 | 2475
2454
2418
2357
2250
798 | 1120
1089
1035
968
941
986 | 2409
2398
2370
2322
2233
723 | | 34
35
36
37
38 | .399
.416
.406
.408
.407 | 482
483
491
484
489 | .815
.815
.812
.808
.813 | 415
405
418
414
419 | 470
457
487
468
467 | 745
747
757
759
765 | 740
742
758
754
751 | 820
775
724
726
656 | 3250
31,03
2632
2643
2266 | 3232
3080
2621
2638
2257 | 1280
1180
970
970
857 | 3083
2944
2477
2487
2123 | 944
850
711
709
641 | 771
742
657
859
607 | 943
850
717
715
849 | 704
685
627
630
587 | TABLE I. - Concluded. PERFORMANCE DATA (b) Concluded. Inlet guide vanes closed. | Figine
speed,
N,
rpm | Cor- rected engine apeed, N -/61 rpm | Compressor-
inlet tip
Mach
number,
M | Engine
air
flow,
Wa,1'
lb/sec | Air flow, | Com-
pressor
pressure
ratio,
P5/P1 | Com-
pressor
effi-
diency,
n | Compressor-
discharge
pressure-
loss ratio,
(P3-P4)/P3 | Combustor
pressure-
loss
ratio,
P4-P5
P4 | Combus-
tion
effi-
ciency,
n _b | Combus-
tion
param-
eter,
P4T3 x
b | Combus-
tion
param-
eter,
Wa,1 ^T 7* | Turbine Reynolds number index, 65 | Cor-
rected
turbine
speed,
N
-/05
rpm | Cor-
rected
turbine
gas
flow,
Wg,5-\sqrt{85}
85
lb/sec | offi-
ciency,
$\eta_{\rm t}$ | Corrected turbine enthalpy drop, AH, /0g, Btu lb-sec | Turbine
pres-
sure
ratio,
P ₅ /P ₆ | Run | |--|--|--|--|--|---|---|--|---|---|---|--|---|---|---|---|--|--|----------------------------------| | | | | | | | | Extra un t- | nogale are | a, 2.38 | 3 sqft | | | | | | | | | | 7091
6019
5016
4061
3604
7063 | 7104
6025
5010
4077
3604
7152 | 0.891
.756
.828
.511
.452
.897 | 91.7
77.4
59.5
40.3
53.5
84.9 | 97.0
81.8
82.4
42.1
35.0
98.3 | 4.149
5.288
2.400
1.739
1.547
3.952 | 0.785
.822
.813
.754
.726
.778 | 0.007
.003
.001
.003
.006
.011 | 0.041
.045
.047
.059
.028 | 0.980
.968
1.012
.930
.918 | 7.47
5.82
3.99
3.10
2.92
5.97 | 11.4
8.58
6.36
4.58
3.92
8,96 | .1.02
.94
.78
.62
.50
1.01 | 4201
5812
5295
2659
2557
4474 | 42.1
42.0
42.3
39.4
35.4
42.8 | 0.777
.846
.848
.958
.783 | 28.1
24.9
19.0
14.4
9.8
30.7 | 2.655
2.380
1.839
1.528
1.399
2.975 | 125488 | | 6538
5502
7087
6540
5985
5447 | 6602
5650
7121
6585
6014
5479 | .828
.895
.893
.826
.754
.867 | 76,7
64,2
35,3
33,2
29,8
26,5 | 91.7
75,5
97.8
92.9
82.8
71.Q | 3,831
2,881
4,030
3,687
3,030
2,489 | .802
.791
.772
.792
.795
.765 | ,005
,006
,009
,003
,006
,003 | .049
.059
.040
.050
.053
.057 | .986
.980
.984
.951
1.008 | 5.14
3.25
2.84
2.17
1.77
1.39 | 7.36
4.91
3.88
3.22
2.60
2.09 | 1.03
.83
.42
.42
.41
.38 | 4358
4084
4352
4291
4145
3979 | 42.1
42.9
42.1
42.9
42.4
41.8 | .868
.875
.887
.869
.858 | 29.8
26.2
30.4
29.7
28.5
28.1 | 2,944
2,815
2,959
2,927
2,809
2,585 | 7
8
9
10
11
12 | | _ | | | | | | | Exhaust- | nossle are | a, 2.51 | sq ft | | | | | | | | | | 7945
7782
7418
6670
5032 | 7950
7797
7429
8683
5042 | 0.998
.978
.932
.838
.632 | 94.8
94.3
93.2
87.5
57.5 | 100,4
99,6
98,2
92,1
59,9 | 4.658
4.574
4.335
3.843
2.418 | 0.725
.740
.768
.810
.804 | 0.008
.005
.003 | 0,040
040
040
041
049 | 0,974
.978
.986
.994
1.048 | 9,08
8,82
8,02
6,85
4,21 | 13.5
13.1
12.2
10.4
6.20 | 0.98
.98
1.00
1.02
.76 | 4554
4514
4240
4024
5295 | 42.3
42.2
42.3
42.1
40.7 | 0.860
.878
.863
.632
.844 | 28.6
28.5
27.8
28.2
19.3 | 2,801
2,777
2,728
2,600
1,948 | 13
14
15
16
17 | | 7945
7797
7415
6735
6146 | 8332
8188
7734
8974
5289 | 1.045
1.023
.970
.875
.661 | 38.4
38.5
37.1
35.8
24.0 | 103.4
103.2
99.9
98.2
55.6 | 4.607
4.672
4.363
3.840
2.295 | .689
.708
.757
.783
.753 | .005
.004
.006
.005
.007 | .042
.027
.041
.048
.059 | .980
.993
.975
.987
.864 | 3.39
3.25
2.91
2.38
1.25 | 4.86
4.70
4.15
3.46
1.78 | .42
.43
.44
.45
.38 | 4550
4555
4507
4584
5698 | 42,1
28,9
41,7
42,2
41,2 | .660
.632
.642
.648
.848 | 50.9
50.7
50.5
29.6
24.7 | 5.112
4.880
5.098
5.024
2.495 | 53
57
50
19
18 | | | | | | | | | Exhaust | -nossle are | A, 2.694 | l sq ft | | | | | | | | | | 7949
7780
7409
6670
5532 | 8575
8393
7992
7195
5961 | 1,078
1,052
1,002
.902
.746 | 89.5
39.0
40.2
37.0
30.7 | 105,2
101,4
105,0
98,3
81,8 | 4.852
4.650
4.558
5.888
2.954 | .661
.674
.732
.763
.809 | .007
.008
.008
.004 | .049
.049
.049
.049
.072 | .977
.965
.979
.992
.948 | 3.35
5.15
2.91
2.30
1.56 | 4.62
4.57
4.12
5.24
2.18 | .45
.48
.51
.50 | 4693
4705
4659
4544
4207 | 41.4
41.5
41.8
42.0
52.8 | .855
.849
.835
.869 | 32.6
32.3
31.8
31.1
28.3 | 3,316
3,315
3,380
3,203
2,269 | 25
24
25
26
27 | | | | | | | | | Exhaust- | nossle are | a, 3.680 | sq ft | | | | | | | | | | 7945
7777
4403
6665
5723
7964 | 7951
7792
7425
6689
5751
8404 | 0.997
.977
.931
.839
.721
1.054 | 98.4
98.0
98.2
90.2
75.5
59.5 | 102.9
102.1
100.3
93.6
77.8
105.1 | 4.258
4.174
4.002
5.585
2.857
4.461
4.362 | 0,715
.727
.760
.797
.817
.872 | 0,007
,006
,007
,004
,002
,008 | 0.044
.045
.044
.048
.082
.047 | 1.002
.986
.995
.977
.985
.979 | 7.51
7.31
6.79
5.69
4.54
2.83 | 11.0
10.7
9.95
8.73
7.09
5.87 | 1.12
1.15
1.14
1.15
1.00
.48 | 4787
4743
4639
4340
3893
5063 | 42.8
42.7
42.6
42.8
42.9
42.3 | 0.857
.870
.861
.875
.847
.846 | 52.7
52.3
51.6
29.3
24.7
56.5 | 5.299
5.261
5.176
2.927
2.438
5.967 | 28
29
30
31
32
33 | | 7424
8598
6834
5937 | 7912
6956
6881
6259 | .992
.872
.863
.785 | 39.0
36.2
35.5
35.4 | 103.6
96,1
96,1
88,8 | 4.154
3.477
5.482
5.001 | .719
.777
.774
.777 | .007
.004
.002
.004 | .044
.055
.057
.059 | .968
.922
.969
.938 | 2.48
1.92
1.94
1.54 | 3.51
2.60
2.60
2.17 | 55
54
55
55 | 8030
4862
4818
4620 | 41.8
41.9
41.9
42.5 | .853
.844
.850
.849 | 35.6
34.1
34.2
32.7 | 3.988
3.771
3.774
3.488 | 35
36
37
38 | TABLE II. - PERFORMANCE DATA OBTAINED AFTER ENGINE OVERHAUL WITH COLD INLET-AIR TEMPERATURES [Inlet guide vanes open.] | Run | Compressor Reynolds number index, 51 1/81 | alfitude-
exhaust
pressure,
Po-
lb/sq ft |
Flight
Mach
number,
M _O | Equivalent ablient air statio temperature, to, or R | Engine-
inlet
total
temper-
ature,
T ₁ ,
o _R | Engine- inlet total pressure, P1, lb sq ft abs | Compressor-
outlet
total
tempera-
ture,
Ts,
or | Compressor— cutlet total pressure, P3' 1b sq Ft abs | Turbine-
inlet
total
temper-
ature,
Tg,
og | Turbine-
inlet
total
pressure,
Ps,
lb
sq ft abs | Turbine-
outlet
totel
tempera-
ture,
To
of | Turbine-
outlet
total
pressure,
Pg'
1b
aq ft abs | Tail-
pipe
total
temper-
ature,
T ₇ ,
R | Tail- pipe total pressure, P7: 1b sq Tt abs | |--|--|--|--|---|--|--|--|---|--|---|--|---|--|---| | | | | | | | Exhaust | -nozzle are | a, 2.388 sq | rt | E. E. P. S. | Landa i | Maria de la composición della | | ·- = | | 10346 | 0.470
.475
.453
.480
.442 | 475
478
484
481
481 | 0.821
.819
.813
.819
.820 | 356
366
383
363
385 | 406
415
434
412
437 | 759
742
747
747
748 | 865
873
891
848
874 | 6163
8046
5920
5730 | 2010
2018
1987
 | 5919
5810
5872
5501 | 1610
1612
1621
1533
1547 | 2046
2009
1947
1880 | 1615
1617
1600
1529 | 1991
1955
1909
1837 | | 6
7
8
9
10 | .489
.436
.489
.488
.439 | 485
482
483
480
492 | .813
.816
.824
.817
.799 | 560
586
357
562
590 | 408
440
406
410
440 | 749
745
754
744
749 | 827
847
802
776
772 | 5347
5580
5067
4136 | 1800
1753
1617
1455 | 5138
5390
4867
3951 | 1466
1442
1392
1263
1148 | 1754
1845
1666
1356 | 1437
1400
1205
1154 | 1716
1796
1626
1322 | | 11
12
15
14
15 | .418
.340
.344
.334 | 478
291
298
303
283 | .809
.826
.819
.803
.813 | 399
326
324
322
323 | 451
373
367
364
368 | 735
455
461
463
482 | 667
829
805
781
764 | 1961
4032
3926
3968
3617 | 1083
2007
1920
1837
1737 | 1860
3873
3781
3814
3487 | 858
1618
1548
1472
1586 | 736
1329
1299
1262
1186 | 871
1607
1540
1466
1386 | 719
1295
1269
1234
1158 | | 16
17
18
19
20 | .341
.267
.261
.276
.274 | 298
297
287
299
311 | .804
.797
.822
.809
.792 | 350
391
388
388
393 | 578
441
442
459
442 | 456
451
447
460
470 | 730
899
890
842
784 | 3575
3606
5547
3243
2597 | 1587
2017
1975
1780
1497 | 3262
3467
3411
3104
2474 | 1262
1593
1605
1438
1192 | 1106
1162
1165
1056
837 | 1266
1521
1580
1422
1169 | 1076
1153
1159
1031
617 | | 21
22
25
24
25 | .271
.206
.205
.215
.212 | 508
181
182
194
190 | .793
.829
.820
.794
.806 | 396
337
338
340
339 | 446
383
384
383
383 | 466
284
283
294
291 | 645
843
906
788
747 | 1088
2467
2540
2267
2075 | 1070
2037
1890
1797
1620 | 1028
2369
2252
2184
2001 | 859
1651
1539
1460
1310 | 422
814
769
737
681 | 872
1640
1520
1437
1294 | 413
791
752
720
665 | | 26
27
28
29
30 | .165
.166
.156
.160 | 175
177
178
186
194 | .841
.837
.832
.802
.784 | 387
389
394
413
411 | 442
444
448
464
461 | 278
280
260
284
291 | 911
690
860
799
701 | 2280
2192
2008
1482
773 | 2067
1975
1633
1510
1227 | 2169
2108
1930
1426
740 | 1690
1606
1484
1218
978 | 758
715
652
485
288 | 1660
1584
1485
1209
998 | 722
898
656
470
280 | | 51
52
53
54
55
56
57 | .161
.156
.160
.126
.127
.135
.127 | 197
189
197
192
188
198 | .409
.417
.409
.438
.486
.438 | 570
369
570
425
424
429
432 | 382
382
382
441
442
445
448 | 221
215
221
218
218
226
225 | 852
785
806
801
865
786
712 | 1788
1844
1562
1661
1549
1176
601 | 1990
1797
1737
2037
1883
1550
1810 | 1708
1593
1508
1596
1469
1138
572 | 1653
1486
1372
1666
1544
1274
1251 | 679
545
516
545
504
398
247 | 1597
1438
1558
1639
1512
1257
1275 | 563
527
504
531
490
567
243 | | | | | | | | Exhaust | -nozzle area | , 2.514 sq f | t | ##1 | F | | | | | 38
39
40
41
42 | 0.180
.177
.178
.178
.178 | 185
179
183
184
185 | 0.800
.823
.808
.802
.804 | 369
366
367
368
367 | 416
415
415
415
414 | 282
279
281
261
280 | 866
855
814
743
871 | 2269
2254
1975
1657
1187 | 1897
1880
1697
1385
1140 | 2209
2132
1891
1564
1119 | 1487
1460
1328
1111
904 | 707
677
542
510
371 | 1502
1469
1332
1082
685 | 684
664
517
490
359 | | 43
44
45
46
47 | .154
.168
.168
.141 | 190
186
201
197
198 | .792
.799
.756
.768
.415 | 419
402
408
599 | 471
446
454
415 | 267
263
286
291
223 | 931

856
800
875 | 2175
2082
1889
1545 | 1990
1757
1500
1953 | 2092
1995
1803
1484 | 1586
1572
1419
1181
1554 | 686
659
589
489 | 1583
1586
1191
1548 | 666
639
571
474 | | 48
49
50
51 | .142
.140
.137
.134 | 198
193
188
186 | .451
.444
.450
.453 | 398
397
397
399 | 415
415
415
415 | 225
221
216
214 | 852
819
781
897 | 1709
1599
1381
1031 | 1867
1740
1523
1297 | 1653
1558
1346
1004 | 1517
1394
1250
1041 | 532
505
440
339 | 1482
1579
1211
1029 | 507
456
424
327 | | 50 | 0.180 | 174 | 0.845 | 125 | 405 | | | , 2.694 sq f | | 2211 | 340% | 070 | 1400 | | | 52
53
54
56
56
57 | .179
.180
.172
.170
.143 | 175
180
173
180
198 | .838
.824
.831
.810
.408 | 355
356
361
364
576
392 | 406
410
414
425
405 | 277
277
261
272
277
222 | 851
833
796
738
644
854 | 2305
2212
2035
1684
856
1741 | 1817
1737
1579
1337
995
1825 | 2211
2127
1945
1590
625
1666 | 1405
1350
1228
1044
795
1428 | 676
646
591
487
216
502 | 1422
1357
1229
1036
779
1426 | 651
622
564
457
207
480 | TABLE II. - Concluded. PERFORMANCE DATA OBTAINED AFTER ENGINE OVERHAUL WITH COLD INLET-AIR TEMPERATURES [Inlet guide vanes open.] | Engine
speed,
N,
rpm | Corrected engine
speed, H | Compressor-
inlet tip
Mach
mamber,
K _e | Engine air flow, Wa,1, lb/sec | Corrected air flow, $\sqrt{\theta_1}$, $\theta_$ | Com-
pressor
pressure
ratio,
P _S /P ₁ | Com-
pressor
eff1-
clenay,
n _o | Compressor- discharge and combustor pressure- loss ratio, \[\frac{P_5-P_5}{T_3} \] | Combus-
tion
effi-
clency, | Commus-
tion
param-
ster,
P4T3
Vb | Combus-
tion
param-
eter,
Wa,1 ^T 7* | Turbine Reynolds number index, 55 | Cor-
rected
turbine
speed,
g
-/05
rpm | Corrected turbine gas flow, ws.5-/85,5,5-/85,5,5-/85,5,5-/85,5,5-/85,5,5-/85,5,5-/85,5,5-/85,5,5-/85,5 | Turbine
effi-
ciency,
[¶] t | Corrected turbine enthalpy drop, AH,/85, Btu lb-wec | Purbine pres-
sure ratio,
P ₅ /P ₅ | Aun | |--|--|---|---|---|---|---|---|--|--|--|--|---|--|--|---|--|--| | <u> </u> | • | | | | | | Ixhaust-nozz | le area, | 2.388 m | q ft | | | | | | | | | 7975
7966
7943
/763
7748 | 9016
8900
8587
8713
8444 |
1.131
1.116
1.089
1.093
1.058 | 59.7
58.8
57.3
59.6
56.8 | 151.1
149.8
148.4
150.4
147.4 | 8.340
8.148
7.926
7.660 | 0.734
.740
.761
.785 | 0.040
.039
.042 | 0.933
.982
.981
1.025 | 6.44
6.30
6.19
5.65 | 9.84
9.50
9.17
9.18
8.68 | 0.56
-55
-55
-56 | 4106
4091
4115
4089 | 42.8
43.0
42.6
42.6 | 0.862
.874
.850 | 30
29
29
29
30 | 2.695
2.892
2.915
2.926 | 1
2
3
4
6 | | 7589
7424
7363
6992
6:47 | 8580
8063
8324
7867
7110 | 1.073
1.011
1.044
.987
.892 | 58.3
54.8
57.9
55.4
47.1 | 148.1
143.3
143.6
140.1
122.6 | 7.177
7.401
6.810
5.522 | .814
.789
.815
.834 | .040
.034
.040
.045 | 1.001
.995
1.009
.998
.971 | 5.26
5.45
4.69
3.67 | 8.56
7.87
8.10
7.12
5.44 | .56
.59
.56 | 4054
4053
4002
3945 | 42.6
42.3
42.9
42.5 | .859
.854
.857
.851 | 25.55 | 2.926
2.921
2.921
2.914 | 6
7
8
9
10 | | 5267
7941
7773
7:-89
7362 | 5650
9387
9244
9063
8742 | .709
1.175
1.159
1.137
1.096 | 24.8
38.2
38.8
38.7
37.5 | 66.4
150.8
149.8
147.9
147.8 | 2.686
5.862
5.516
6.570
5.002 | .676
.706
.706
.739
.754 | .052
.038
.037
.039
.036 | .914
.961
.979
.972
.964 | 1.57
4.30
4.02
4.12
3.64 | 2.16
6.15
5.98
5.57
5.20 | .36
.37
.38
.40
.39 | 3686
4097
4092
4082
4069 | 40.5
41.9
42.5
41.0
42.2 | .875
.888
.858
.840
.852 | 58
58
58
58
58 | 2.527
2.916
2.910
3.022
2.940 | 11
12
13
14
15 | | 6998
7947
7835
7365
6619 | -8254
8621
8490
8006
7173 | 1.035
1.081
1.065
1.004
.899 | 36.1
33.6
33.6
33.0
29.0 | 142.0
146.3
146.9
139.7
120.5 | 7.401
7.996
7.935
7.050
5.526 | .806
.775
.790
.809
.812 | .034
.038
.038
.043
.047 | .945
.956
.935
.856
.960 | 3.19
3.89
3.79
3.22
2.36 | 4.57
5.48
5.31
4.70
3.45 | .40
.33
.33
.34
.33 | 4040
4085
4070
4025
3938 | 41.5
41.5
42.2
42.4 | .838
.853
.867
.862
.840 | 52
53
53
53
56 | 2.944
2.933
2.928
2.939
2.966 | 16
17
18
19
20 | | 7877
7868
7406
6935 | 5435
9169
8844
8619
8072 | 1.150
1.109
1.081
1.012 | 14.0
22.9
23.2
22.9
22.5 | 58.0
148.6
149.4
141.4
139.3 | 2.292
8.687
6.269
7.711
7.151 | .598
.708
.748
.749
.793 | .038
.040
.038
.037
.036 | .819
.932
.937
.947
.937 | .82
2.69
2.39
2.270
1.96 | 1.22
3.75
3.53
3.29
2.88 | .20
.22
.25
.25
.24 | 3548
4032
4037
4029
3967 | 41.3
41.3
43.5
41.9
42.1 | .857
.836
.843
.845
.839 | 29
29
29
29 | 2.436
2.910
2.929
2.963
2.939 | 21
22
25
24
25 | | 7890
7748
7358
6142
1 502 | 8858
8377
7919
6919
5838 | 1.085
1.050
.893
.868
.732 | 20.7
20.5
19.3
15.7
8.9 | 145.1
141.7
135.7
110.3
60.8 | 8.201
7.829
7.171
5.218
2.656 | .771
.791
.816
.632
.821 | .040
.038
.039
.038
.045 | .907
.911
.903
.892
.718 | 2.55
2.40
2.11
1.42
1.68 | 3.43
3.21
2.83
1.89
.89 | .20
.20
.20
.20 | 4063
4025
3963
3870
3634 | 40.7
40.5
40.4
38.9
39.2 | .853
.853
.846
.820
.837 | 30
29
28
28
25 | 2.966
2.945
2.960
2.940
2.569 | 26
27
28
29
30 | | 7651
7256
6986
7614
7435
6036
5463 | 8916
8458
8145
8477
8057
7058
5869 | 1.116
1.061
1.021
1.063
1.010
_885
_736 | 17.1
18.3
16.1
15.8
14.9
12.5
5.7 | 140.4
138.8
132.6
140.9
133.4
108.4
49.9 | 7.991
7.718
7.068
7.584
7.106
5.204
2.695 | -986
-754
-671
-747
-760
-784
-656 | .033
.051
.035
.039
.039
.032
.048 | .905
.932
.976
.935
.891
.901
.719 | 1.85
1.53
1.78
1.63
1.12
.65 | 2.73
2.34
2.19
2.59
2.25
2.45
.72 | .18
.19
.17
.15
.15
.16 | 3946
3946
5862
3998
3952
3820
3229 | 45.6
42.0
43.0
42.4
41.0
40.5
36.2 | .856
.851
.926
.854
.843
.799
.812 | 29
29
31
29
29
27
27 | 2.950
2.933
2.911
2.928
2.954
2.860
2.316 | 31
32
33
34
35
36
37 | | <u> </u> | _ | | | | | | zhaust-nozz | le area, | 2.514 5 | ı ft | | | | | | | | | 7924
7835
7405
6,49
5762 | 8651
8762
8279
7524
6440 | 1.110
1.099
1.058
.918
.806 | 21.9
22.0
21.5
18.1
15.2 | 146.9
148.5
144.4
122.1
102.5 | 8.117
8.007
7.026
5.897
4.239 | 0.753
.762
.775
.634
.823 | 0.035
.046
.043
.056
.067 | 0.902
.911
.951
.876
.831 | 2.42
2.30
1.84
1.53 | 3.28
3.23
2.66
1.96
1.34 | 0.22
.22
.22
.18
.20 | 4198
4192
4139
4041
3929 | 40.8
41.9
43.9
40.2
42.6 | 0.851
.850
.857
.862 | 51
50
30
29 | 3.124
3.150
5.489
3.067
3.017 | 58
39
40
41
42 | | 793C
7756
7375
6636
7964 | 8325
7954
7995
8927 | 1.044
-997
.89C
1.119 | 20.4
19.9
17.1
17.0 | 142.9
135.5
116.5
145.5 | 7,371
7,357
8,569
5,308 | .795
.769
.800 | .037
.030
.051
.051 | .913
.963
.939
.946 | 2.35
1.82
1.41 | 3.22
2.76
2.04
2.62 | .20
.20
.20 | 4106
4052
5938
4183 | 41.1
43.5
41.8 | .856
.851
.825 | 30
30
29
30 | 3.060
3.028
3.061
3.035 | 45
44
45
48
47 | | 7765
7420
6721
5953 | 8704
8317
7534
6657 | 1.091
1.045
.946
.855 | 16.8
16.0
14.9
12.0 | 139.5
136.6
129.8
106.9 | 7.596
7.235
6.394
4.816 | .735
.772
.830
.838 | .035
.026
.025
.026 | .924
.907
.938
.863 | 1.78
1.62
1.30
.90 | 2.46
2.21
1.60
1.23 | .17
.17
.18
.16 | 4147
4098
5982
5793 | 40.9
40.3
40.3
39.6 | .844
.843
.817
.824 | 30
30
29
26 | 3.108
3.085
3.059
3.962 | 48
49
50
51 | | <u></u> | | | 100. | | | | inhaust-nozzi | | 2.594 80 | | | Lines | | | | | | | 7952
7780
7369
6585
5388
7924 | 9003
8796
8291
7373
5954
8971 | 1.129
1.105
1.040
.925
.747
1.125 | 22.4
22.7
22.0
16.9
11.1
17.1 | 151.0
163.5
147.1
151.0
77.0
145.6 | 8.321
7.986
7.242
6.118
3.090
7.842 | -751
-768
-807
-867
-738
-719 | .041
.038
.044
.045
.036 | .902
.949
.939
.959
.562
.925 | 2.40
2.18
1.91
1.49
.67 | 5.18
5.08
2.70
1.95
.87
2.44 | .23
.24
.25
.24
.18 | 4301
4259
4265
4138
3830
4276 | 40.7
41.9
42.1
40.4
39.8
41.3 | .850
.845
.840
.837 | 32
32
31
31
28
32 | 3.293
3.293
3.291
3.265
3.820
3.319 | 52
53
54
55
55
57 | Figure 1. - Schematic diagram of altitude test chamber. Figure 2. - Installation of YJ73-GE-3 turbojet engine in altitude test chamber. Figure 3. - Cross section of YJ73-CE-3 turbojet engine showing location of instrumentation. (a) Compressor rotor. Figure 4. - Components of YJ73-GE-3 engine. (b) Combustor liner and transition section. Figure 4. - Continued. Components of YJ73-GE-3 engine. (c) Turbine rotor. Figure 4. - Concluded. Components of YJ73-GE-3 engine. Figure 5. - Variation of Reynolds number index with altitude and flight Mach number at standard NACA conditions. (a) Inlet guide vanes closed; Reynolds number index, 0.96. Figure 6. - Compressor performance maps. (b) Inlet guide vanes closed; Reynolds number index, 0.40. Figure 6. - Continued. Compressor performance maps. (c) Inlet guide vance open; Reynolds number index, 0.39. Figure 6. - Concluded. Compressor performance maps. 40 NACA RM E54D09 Figure 7. - Effect of compressor Reynolds number index on compressor efficiency and corrected air flow. Inlet guide vanes open. Applicable at all compressor pressure ratios at corrected engine speeds of 6800 rpm and above. 167 V-6 Figure 8. - Effect of inlet-guide-vane position on compressor pressure ratio, efficiency, and corrected air flow for rated exhaust-nozzle area. Reynolds number index, 0.96. Figure 9. - Compressor performance map showing lines of constant corrected turbine-inlet temperature. Inlet guide vanes open. (b) Reynolds number index, 0.12. Figure 9. - Concluded. Compressor performance map showing lines of constant corrected turbine-inlet temperature. Inlet guide vanes open. Figure 10. - Variation of combustion efficiency with combustion parameters. Figure 11. - Variation of combustor total-pressure loss ratio with combustor temperature ratio. 1.2 Average radial distribution (b) Reynolds number index, 0.12; corrected engine speed, 7514 rpm; turbine-outlet total temperature, 1637° R; exhaustnozzle-inlet total temperature, 1582° R. Figure 12. - Typical total-temperature profiles at turbine outlet, station 6. ____ Figure 13. - Turbine performance map. Compressor Reynolds number indices of 0.96 and 0.88. Turbine Reynolds number indices varied as shown in table I. Figure 14. - Effect of turbine Reynolds number index on turbine efficiency and corrected turbine gas flow. Figure 15. - Variation of compressor, combustor, and turbine efficiency and corrected air flow with altitude at
rated engine conditions. Flight Mach number, 0.8. ţ . § 1